
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

All-Passive Hardware Implementation of Multilayer
Perceptron Classifiers

Akshay Ananthakrishnan and Mark G. Allen , Fellow, IEEE

Abstract— Bottom–up-fabricated crossbars promise superior
circuit density and 3-D integrability compared with the
traditional CMOS-based implementations. However, their inher-
ent stochasticity presents difficulties in building complex cir-
cuits from components that demand precise patterning and
high registration accuracies. With fewer terminals than active
devices, passive components offer higher device densities and
registration tolerances, making them amenable to bottom–up
synthesized nanocrossbars. Motivated by this preference for
passivity, we explore, in this article, neuromorphic classifiers
based on passive neurons and passive synapses. We demon-
strate via SPICE simulations how a shallow network of the
diode–resistor-based passive rectifier neurons and resistive volt-
age summers, despite its inherent inability to buffer, amplify,
and negate signals, can recognize MNIST digits with 95.4%
accuracy. We introduce weight-to-conductance mappings that
enable negative weights to be implemented in hardware without
excessive memory overheads. The influences of soft and hard
defects on the classification performance are evaluated, and the
methods to boost fault-tolerance are proposed. The first-order
evaluation of the area, speed, and power consumption of the
passive multilayer perceptron classifiers is undertaken, and the
results are compared with a benchmark study in neuromorphic
hardware.

Index Terms— Analog circuits, complex neuromorphic systems,
crossbar architectures, diode–resistor networks, multilayer per-
ceptron hardware, neural network hardware, passive neurons,
shallow neural networks, supervised learning.

I. INTRODUCTION

THREE-DIMENSIONALLY interconnected analog neuro-
morphic computers offer a promising route to implement-

ing complex machine learning tasks in a hardware-efficient
manner. In this context, a widely adopted technology, namely,
the CMOS/Nanohybrid (CMOL), utilizes nanoscale crossbars
to store synaptic weights and a relatively sparse, CMOS-based
neuron layer to perform logical operations [1], [2]. However,
the inherent challenge of interfacing CMOS with nanocross-
bars, i.e., neuron–synapse connections, restricts the scalability

Manuscript received February 18, 2019; revised July 7, 2019, April 14,
2020, and July 14, 2020; accepted August 8, 2020. (Corresponding author:
Akshay Ananthakrishnan.)

Akshay Ananthakrishnan is with the Department of Mechanical Engineer-
ing and Applied Mechanics, University of Pennsylvania, Philadelphia, PA
19104 USA (e-mail: akshayan@seas.upenn.edu).

Mark G. Allen is with the Department of Electrical and Systems Engi-
neering, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail:
mallen@seas.upenn.edu).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2020.3016901

of CMOL [3]. An alternative approach to build powerful
neuromorphic computers is to reduce CMOS dependence and,
instead, develop neuron circuits that can be integrated into
nanocrossbars [4], [5]. Compared with conventional top–down
fabrication, bottom–up synthesis, unstructured [6]–[8] and
semistructured [9], [10], can produce much larger 3-D net-
works of crisscrossing wires at lower costs [5]. However, their
inherent stochasticity establishes a preference for transistor-
free, passive circuits built using two-terminal devices, such as
diodes and resistors, which are more tolerant of registration
inaccuracies [4], [5]. Previous studies [9], [11] have already
successfully demonstrated the Boolean logic using resistive
switches and diodes in bottom–up-fabricated crossbars. The
preference for simplicity at the nanoscale raises an important
question: is it possible to build functional neuromorphic com-
puters using passive neurons and passive synapses?

To answer this question, we must first identify the short-
comings of passive neurons and the architectures that best
support a functional network of passive neurons. Given that
passive neurons cannot negate inputs or isolate different layers
of an all-passive neural network, it is reasonable to expect
that loading effects could greatly impact classification per-
formances [5]. Among the main factors determining loading,
network depth (i.e., shallow versus deep) and neuron fan-out
are key. Using a single hidden layer with many units, shallow
multilayer perceptrons (SMLPs) generate varied representa-
tions of inputs and combine them meaningfully to ascertain
the decision boundaries that demarcate various data classes.
With enough training data and hidden layer units, SMLPs
are universal approximators, and they can generate arbitrarily
accurate approximations to any function [12]. On the other
hand, deep multilayer perceptrons (DMLPs) utilize several
hidden layers to represent a target function as a composi-
tion of simpler functions. From a hardware standpoint, all-
passive DMLPs are suboptimal since: 1) stacking multiple
bufferless layers of passive neurons will likely amplify loading
effects and distort the voltage outputs of inner layers and
2) the inability to access inputs to buried hidden layers in
DMLPs will prevent resourceful implementation of negative
weights since each passive neuron cannot, by itself, produce
complementary (positive and negative) outputs. In contrast
to DMLPs, all but one layer of SMLPs can be accessed
externally, and this provides advantages in implementing neg-
ative weights (discussed later). From a performance viewpoint,
model compression methods have shown that SMLPs can
achieve similar accuracies as DMLPs and, in some cases,

2162-237X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 17,2021 at 14:08:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2791-9514
https://orcid.org/0000-0003-3963-6359

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. PVS circuit (right) and its equivalent block diagram representation
(left). Note that the block diagram implicitly includes the bias input VB ,
without allocating a separate input terminal.

Fig. 2. Thevenin equivalent circuit of the PVS. Here, VPVS and RPVS are
the Thevenin voltage and the Thevenin resistance, respectively.

without excessive parameters, i.e., the number of synaptic
weights [13].

Motivated by these ideas, we present, in this article, a
hardware implementation of all-passive SMLPs. We extend
early theoretical works in analog diode logic [14], [15] to
evolve passive circuit designs for neurons and synapses. Our
passive rectifier neurons (PRNs) harness the piecewise lin-
ear approximation capabilities of diode networks to emulate
“ReLU” activations. We show how the voltage summing prop-
erties of passive voltage summers (PVSs) can be utilized to
implement resistive dot-product engines. We introduce meth-
ods that leverage the limited depth of SMLPs to implement
signed synaptic weights in hardware using a nondifferential
arrangement of resistors. These simple hardware represen-
tations present advantages for the fabrication of complex
neuromorphic systems.

The remainder of this article is organized as follows.
Section II introduces the building blocks of passive SMLPs,
namely, the PVS and the PRN. Section III discusses the ana-
lytical core of passive SMLPs, namely, weight-to-conductance
transformations, feature-to-input voltage mappings, and bias-
voltage relationships. Section IV presents the passive SMLP
performance on the MNIST digit classification task and
assesses its susceptibility to defects. Strategies to improve
fault-tolerance are discussed. Conclusions are presented in
Section V.

II. BUILDING BLOCKS OF PASSIVE PERCEPTRON

HARDWARE

A. Passive Voltage Summers

Fig. 1 describes a PVS comprised of parallel “synaptic”
resistors R1 to RN and a “bias” resistor RB . It receives voltage
inputs V1 to VN and a constant bias input VB and produces
an output voltage V0 across a high impedance load connected
between output terminal O and ground (not shown in Fig. 1).
Since the PVS is a resistive network, we use Thevenin’s

Fig. 3. Diode–resistor circuit design of a PRN (right) and its equivalent
block diagram representation (left).

theorem to simplify the circuit in Fig. 1 to its equivalent
representation in Fig. 2. Here, the Thevenin voltage VPVS and
the Thevenin resistance RPVS are derived from the synaptic
conductance vector G and the input voltage vector V as
follows:

VPVS =
(

N∑
i=1

Gi Vi

Gsum

)
+

(
G B VB

Gsum

)
(1)

RPVS = 1

GPVS
(2)

GPVS = Gsum =
(

N∑
i=1

Gi

)
+ G B . (3)

The term Gsum (hereafter referred to as “conductance sum”)
in (3) is a constant that is set a priori. Unlike in situ
training, where all Gs are optimized on-chip, the relatively
‘low overhead’ ex situ training approach adopted in this article
determines all Gs from the corresponding weights of software-
trained SMLPs. Note that the discussion so far, including the
calculations in (1)–(3), considers the parasitic wire resistances
to be negligible compared with any of the resistors in Fig. 1.
While this assumption is true for the wire geometry adopted
in this article (further discussed in section IV), it may not
be reasonable for implementations with much smaller wire
widths. In these cases, the vector-matrix multiplication oper-
ation by the PVS will be distorted, and VPVS will deviate
from (1). Optimizing the PVS performance in the presence of
these distortions will require adopting hardware-aware training
[16] or in situ training approaches [17].

B. Passive Rectifier Neuron

A PRN receives an input from a PVS and produces an
output that is a “rectified-linear” form of its input. This
transformation guarantees that the magnitude of a PRN’s
output never exceeds that of its input, a property that enables
its construction using the simple diode–resistor circuit shown
in Fig. 3. Assuming the PRN to be ideal (i.e., the diode D is
ideal) and in a “standalone” condition (i.e., when its output
port is not connected to any load), we explain its operation by
highlighting that: 1) for negative input voltages, i.e., V1 < 0,
the reverse-biased diode blocks the passage of current, and the
PRN output is pulled down to ground potential, i.e., V2 = 0 V
and 2) when the input voltage is nonnegative, i.e., V1 ≥ 0,
the ideal diode conducts, and this allows the PRN output to
follow its input, i.e., V2 = V1. Mathematically, these two
observations can be summarized as

V2 = max(0, V1). (4)

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 17,2021 at 14:08:18 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ANANTHAKRISHNAN AND ALLEN: ALL-PASSIVE HARDWARE IMPLEMENTATION OF MULTILAYER PERCEPTRON CLASSIFIERS 3

Fig. 4. Circuit diagram of a PRN receiving inputs from the PVS (represented
by the Thevenin voltage VPVS and the Thevenin resistance RPVS) and driving
a load (dotted orange block containing the Thevenin voltage V ’ and the
Thevenin resistance R’).

For a “real” PRN that utilizes a real diode, we adopt the
piecewise linear diode model that accounts for the forward
voltage drop VF and the series resistance RS of the diode.
Although this model does not accurately capture: 1) the
nonlinearity of diode I–V close to the turn-on voltage and
2) the finite reverse saturation current IS , it is effective in
identifying the key features of PRN networks (as seen in
Section IV).

Consider a real PRN that receives its input from a PVS and
drives a loading circuit comprised of voltage sources and resis-
tors. Using the Thevenin-equivalent PVS circuit in Fig. 2 and
representing the loading circuit by its Thevenin-equivalent
form (i.e., a Thevenin voltage source V ′ in series with a
Thevenin resistance R′), we obtain the circuit in Fig. 4. Here,
we assume that the bias voltage input VB to the PVS is
VB + �VB , where �VB = VF(Gsum/G B) [per (1)] com-
pensates the finite forward voltage VF . Therefore, we have
not explicitly included a voltage source (supplying a voltage
VF with respect to ground) in Fig. 4. When the diode D
in Fig. 4 is forward-biased, we can replace it with a “short,”
and under this condition, we can simplify the driving circuit
(dotted blue box in Fig. 4) to its Thevenin-equivalent form,
in Fig. 5. Here, VPRN and RPRN denote the Thevenin voltage
and the Thevenin resistance, respectively, and they can be
calculated as

VPRN = VPVS

(
γ

γ + 1

)
(5)

RPRN = (RPVS + RS)

(
γ

γ + 1

)
(6)

where γ = RPD/(RPVS + RS). Using the voltage-divider
formula and the expressions for VPRN and RPRN from (5) and
(6), respectively, we get the PRN output voltage V2 as

V2 =
(

γ

γ (α + 1) + 1

)(
VPVS + (α)V ′) (7)

where α = (RPVS + RS)/R′. In contrast to the case discussed
earlier, when the diode D is reverse-biased, we can replace
it, effectively, with an “open,” and this simplifies the circuit
in Fig. 4 to its equivalent representation in Fig. 6.

Using the voltage-divider rule and the definitions of γ and
α provided earlier, we can calculate the PRN output voltage

Fig. 5. Thevenin equivalent circuit (dashed blue block containing the
Thevenin voltage VPRN and the Thevenin resistance RPRN) representing the
combination of the PVS and the PRN (in a conducting state). The dotted
orange block is the Thevenin equivalent load comprising of the Thevenin
voltage V ’ in series with the Thevenin resistance R’.

Fig. 6. PRN circuit when the neuron is in a nonconducting state, i.e., when
the diode comprising the passive neuron is reverse biased.

V2 as

V2 =
(

γα

1 + γα

)
V ′. (8)

From (7) and (8), we conclude that for both “conducting”
and “nonconducting” states of the PRN, the resistors in Fig. 4
will cause the PRN output to deviate from the rectified-linear
activation in (4), i.e., V2 = max(0, VPVS). A precise analytical
description of this deviation is difficult to obtain, especially
in the case of SMLPs, where the Thevenin-equivalent load
resistor R′, and hence α, for a specific PRN will depend
on: 1) the PRN of interest; 2) the states of the remaining
hidden PRNs; 3) RPVS corresponding to other PVSs in the
hidden layer; 4) R′

PVS corresponding to PVSs in the output
layer; and 5) the constant value of RPD. Therefore, it is only
feasible to express αk for the kth hidden PRN as αk =
fk(γ, λ), where λ = R′

PVS/(RPVS + RS) and γ are constants
across all hidden PVSs (assuming a constant RPVS for all
hidden PVSs). Consequently, the outputs of hidden PRNs and
the overall performance of the passive SMLP classifier will
be a nontrivial function of the parameters Gsum, γ , and λ.
Since these parameters determine the dc operating point of
SMLPs, they also control the magnitudes of diode currents.
For large SMLPs, the maximum permissible diode current will
determine the lower bounds on γ and λ.

III. WEIGHT-CONDUCTANCE TRANSFORMATIONS

We consider an ex situ training approach where we train
a SMLP in software (hereafter referred to as “soft SMLP”)
and then implement it in hardware as a passive SMLP,
by transforming: 1) the software-determined weights (hereafter
referred to as “soft weights”) in W into synaptic conductances
in G and 2) the software-determined biases B (hereafter
referred to as “soft bias”) into voltage biases in VB and conduc-
tances in G B . This demands careful attention to the properties
of PVSs described by (1)–(3). First, the strict nonnegativity
of Gsum, G, and G B implies that each “hardware synaptic
weight,” Gi/Gsum, and “hardware bias weight” G B/Gsum are
always nonnegative and less than unity. It is also imperative
that the inequality

∑N
i=1 Gi < Gsum be satisfied so that the

nonzero soft biases in B can be implemented in hardware by

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 17,2021 at 14:08:18 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

VB and G B . These two critical aspects of PVS circuit design
can be achieved by leveraging the limited depth of SMLPs and
the scale-invariance property of PRNs (refer to Section S.I in
the Supplementary Material for details).

Consider a soft SMLP classifier with “m” input nodes, “n”
hidden layer nodes, and “p” output nodes that can be trained to
learn the association between a feature vector X (m×1) and its
corresponding class labels L(p ×1). This knowledge is stored
in the form of hidden weight W (n × m), the hidden soft bias
B(n × 1), the output weight W ′(p × n), and the output soft
bias B ′(p × 1). A passive SMLP hardware implementation
of this soft SMLP utilizes “2m” voltage inputs, “n” pairs
of PVS-PRN blocks in parallel in the hidden layer, and a
total of “p” PVS blocks in the output layer. It is important
to appreciate that classification tasks demand appropriate
relative ordering of SMLP outputs without regard for their
magnitudes, and this eliminates the need for neuron blocks in
the output layer. Note that in comparison to the soft SMLP,
the passive SMLP hardware utilizes “m” additional voltage
inputs whereby out of the “2m” voltage inputs in VIN(2m ×1),
“m” are obtained from X , and the remaining “m” inputs
are derived from −X . This scheme enables negative weights
in W to be implemented with all positive conductances in
G without requiring a differential configuration of resistors.
By scaling the inputs in X appropriately, we obtain VIN

as follows:

VIN = (
K K ′/KV

)[X
−X

]
(9)

K = ceil(T) + ε (10)

K ′ = ceil(T ′) + ε ′ (11)

T = max
1≤i≤n

⎛
⎝ m∑

j=1

∣∣Wi j

∣∣
⎞
⎠ (12)

T ′ = max
1≤i≤p

⎛
⎝ n∑

j=1

∣∣W ′ + W ′
SH

∣∣
⎞
⎠ (13)

W ′
SH = 1pCT (14)

C j = − max
1≤i≤p

(
W ′

i j

)
. (15)

Here, “ceil’ represents the ceiling function ceil(x) = min{n ∈
Z |n ≥ x}. The terms ε and ε ′ are nonnegative constants that
must be set to arbitrary nonzero values when the respective
values of T or T ′ are integers. This guarantees K > ceil(T)
and K ′ > ceil(T ′) for arbitrary weight matrices W and
W ′, thereby ensuring that all conductances in the hidden
bias conductance vector G B [obtained from (3)] have finite,
nonzero values. Equations (14) and (15) define the weight-
shift matrix W ′

SH in terms of the minimum synaptic weight
in each hidden layer PRN. The significance of W ′

SH and its
effect on SMLP outputs is discussed in the latter part of
this section. Note that the voltage scale factor KV in (9)
is an arbitrary constant that restricts the input voltages in
VIN to a desired voltage range. While a large KV can lower
the power consumption of the SMLP, a concomitant drop in
the output voltages will increase its susceptibility to noise.

Thus, the optimal KV emerges from a tradeoff between power
consumption and classification accuracy.

From (9), we see that any negative soft weight Wi j between
an input node i and a hidden node j in the soft SMLP
classifier can be implemented in hardware by connecting the
voltage input (VIN)i+4 to the j th PRN through a resistor whose
conductance depends only on the magnitude of the soft weight
|Wi j |. Thus, by transferring the sign associated with each Wi j

to the voltage inputs in VIN, we can represent |Wi j | using
conductances in the input-hidden synaptic conductance matrix
G(2m × n). We construct a block matrix representation of G
as follows:

G = [
G+

N G−
N

]
(16)(

G+
N

)
i j

=
(

Gsum

2K

)[
1 + sgn

(
Wi j

)]∣∣Wi j

∣∣ (17)

(
G−

N

)
i j

=
(

Gsum

2K

)[
1 − sgn

(
Wi j

)]∣∣Wi j

∣∣ (18)

where Gsum is a constant that denotes the conductivity sum
for each hidden PVS. From (18) and (19), we find that when
(G+

N)i j �= 0, then (G−
N)i j = 0, and when (G+

N)i j = 0, then
(G−

N)i j �= 0, and vice versa. This property ensures that G
has exactly “m · n” nonzero elements, each corresponding to
a synaptic weight in W . Using the relationship between G,
Gsum, and G B provided in (3), we calculate the hidden bias
conductance G B(n × 1) as follows:

G B = Gsum1n − G12m (19)

where 12m and 1n are “all-ones” vectors with dimensions
2m × 1 and n × 1, respectively. Using the hidden soft bias
B and the hidden bias G B from (19), we obtain the hidden
bias voltage VB as

VB = Gsum DB

[(
K ′

KV

)
B + VF 1n

]
(20)

(DB)i j = δi j

(G B)i
(21)

where j = 1, . . . , n, δ is the Kronecker delta, and there is no
implied summation over the indices. Note that the last term in
(20) biases the diode to an operating point that is empirically
chosen to maximize network accuracy.

The outputs of real PRNs are always nonnegative due to the
activations they perform. Hence, the above approach cannot be
employed for hardware implementation of negative weights in
W ′. To address this bottleneck, we propose a method that:
1) shifts all weights in W ′ by the magnitude of the most
negative weight in W ′, thereby ensuring that all weights in W ′
are nonnegative and then 2) transforms these modified weights
into conductances in G ′(n × p). These two sequential steps
can be expressed mathematically as

W ′
P = W ′ + W ′

SH (22)

G ′ =
(

G ′
sum

K ′

)
W ′

p (23)

where G ′
sum is a constant signifying the conductance-sum

associated with each output PVS, and W ′
SH (referred to as

the weight-shift) is defined by (14) and (15). It is useful to

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 17,2021 at 14:08:18 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ANANTHAKRISHNAN AND ALLEN: ALL-PASSIVE HARDWARE IMPLEMENTATION OF MULTILAYER PERCEPTRON CLASSIFIERS 5

note that W ′
SH introduces some sparsity in G ′, such that out of

the np conductances in G ′, a minimum of "n" conductances
are identically zero. The overall sparsity in G ′ could be
further enhanced by pruning the network appropriately. These
strategies optimize the required number of interconnects and,
thereby, offer advantages for the fabrication of passive SMLP
hardware. Using (3) and the value of G ′ calculated from (23),
we compute the bias conductance G ′

B for output PVSs as

G ′
B = G ′

sum1p − G ′1n (24)

where 1p and 1n are all-ones vectors of dimensions p × 1
and n ×1, respectively. Since the output layer does not utilize
PRNs, the output bias voltage V ′

B can be calculated as

V ′
B =

(
G ′

sum

KV

)
D′

B B ′ (25)

(
D′

B

)
i j

= δi j(
G ′

B

)
i

(26)

where i, j = 1, . . . , p, δ is the Kronecker delta, and there is
no implied summation over the indices.

The above approach assumes that shifting weights in W ′
according to (24) does not impact the accuracy of SMLP
classifiers. To validate this, we combine (22) and (23) as
follows:

G ′ = G ′
0 + �G ′

0 (27)

where G ′
0 = (G ′

sum/K ′)W ′ and �G ′
0 = (G ′

sum/K ′)W ′
SH.

Here, G ′
0 represents the original synaptic conductance

obtained directly from W ′, i.e., without shifting W ′ by W ′
SH,

and �G ′
0 is the offset to G ′

0 caused by W ′
SH. Assuming that the

passive SMLP has a large output impedance (with respect to
ground), we employ (1) and (27) to quantify the influences of
G ′

0 and �G ′
0 on the SMLP output V ′(approximated to be equal

to the open-circuit voltage due to the large output impedance)
as

V ′ = G ′VH + G ′
B V ′

B

G ′
sum

= V ′
0 + �V ′

0 (28)

where V ′
0 = (1/G ′

sum)(G ′
0VH + G ′

B V ′
B) and �V ′

0 =
(1/G ′

sum)(�G ′
0VH).

Here, VH is the voltage output of hidden PRNs, V ′
0 is the

original voltage output of output PVSs (using G ′
0 instead of

G ′), and �V ′
0 is the voltage offset produced by the conduc-

tance offset �G ′
0. It is useful to note that since the soft-bias

B ′ is a constant, it satisfies the equality B ′/KV = G ′
B V ′

B =
G ′

B0V ′
B0. Here, G ′

B0 and V ′
B0 are the original output bias

conductance and the output bias voltage, respectively, which
are obtained by replacing G ′ in (24) and (26) with G ′

0. Using
(14), (27), and (28), we obtain �V ′

0 as

�V ′
0 =

(
C · VH

K ′

)
1p = VOFS1p (29)

where VOFS = (C · VH/K ′). Here, C · VH is the dot product
between vectors C [defined by (15)] and VH . From (29),
we see that W ′

SH offsets all “p” voltage outputs of the passive
SMLP by the same amount VOFS. Since a constant VOFS does
not disturb the relative ordering of passive SMLP outputs,
we conclude that shifting weights in W ′ does not affect the
classification accuracies of passive SMLPs.

Fig. 7. Passive SMLP circuit for the MNIST digit classification problem. The
inputs VIN(196) −VIN(391) are corresponding negatives of VIN(0) − VIN(195).
Note that all output weights are nonnegative, and thus, negated values of
hidden layer outputs are unnecessary. The 100 M� output resistors were
chosen to be larger than all other resistors in the network.

IV. PASSIVE MULTILAYER PERCEPTRON CLASSIFIER

Using the PVS and PRN circuits discussed previ-
ously, we implemented a passive SMLP that classifies
the MNIST digits. As a part of preprocessing, the orig-
inal 28-pixel × 28-pixel MNIST images were cropped to
20-pixel × 20-pixel and then resized to 14-pixel × 14-pixel.
To restrict the magnitudes of voltage inputs to the SMLP, all
pixel intensities were rescaled from their original values in
the [0 255] interval to corresponding values in the [−2 2]
interval. These intensity-rescaled images were then unrolled
into vectors of sizes 196 × 1 and provided as inputs to a 196
– 60 – 10 soft SMLP. Neurons in the hidden layer of the soft
SMLP employed “ReLU” activations, while those in the output
layer implemented “softmax” activations. The soft SMLP was
trained on the first 60,000 gray-scale MNIST images while
constraining the maximum L2 norms of weights and biases to
0.8 and 0.2, respectively. Such a constrained training approach
ensured that the scale factors in (10) and (11) and the bias
voltage inputs VB and V ′

B weren’t large. Overall, the trained
soft SMLP exhibited a 95.87% classification accuracy on the
MNIST test set.

Fig. 7 shows the hardware instantiation of the soft SMLP
used for SPICE simulations. Each hidden node of the hardware
SMLP utilized a serial arrangement of PVS and PRN blocks,
and output nodes employed a PVS block each. The weight-to-
conductance transformations introduced in Section III, along
with the optimized values of λ and γ (discussed later in
this section), were used to calculate the “ideal” conductances
of all resistors. These were then quantized into 65 discrete
conductance “bins” between 1 and 500 μS based on practically
achievable analog states [17]–[20]. For SPICE simulations
of our passive SMLPs, we modeled all memristors as resis-
tors (with a temperature coefficient of resistance T C1 =
0.0015[1/K] and nominal temperature TNOM = 300 K) in
parallel with a parasitic capacitor Cm = ε0εrw

2/d = 10 fF,
where εr = 60, w = 0.5 μm is the electrode width, and
d = 15 nm is the thickness of TiO2−x active layer [21] [22].
The diodes comprising the PRNs in Fig. 7 were modeled as

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 17,2021 at 14:08:18 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 8. Operation of the passive SMLP showing voltage-encoded inputs
(left column) and the corresponding output voltages (right column). The first
row describes the accurate classification of input “3” (left), and the second
row shows how input “9” (left) was misclassified as “4” (red bar). Note that
the color shades in the bar plots represent bar heights, where darker shades
represent taller bars.

real nanoscale diodes [23], [24], and their SPICE parameters,
namely, the reverse saturation current I0, the ideality factor
n, and the series resistance Rs , were obtained by fitting the
diode equation I = I0 exp ((V − I Rs)/nVT) to its I–V
characteristic. The following empirically-determined diode
parameters were utilized in all steady-state SPICE simulations:
I0 = 0.69 μA, n = 4.76, and Rs = 286 �. For transient
analysis, we estimated the diode junction capacitance CJ

from the reported switching time delay TS = 20 ns and
RS as CJ = (TS/5RS) = 14 pF, where we assumed that
it takes a total time TS = 5RSCJ for the diode to reach
steady-state following a step-voltage excitation. For a crossbar
implementation of resistors based on nanowires having width
w = 0.5 μm, thickness h = 25 nm, pitch p = 0.5 μm [18],
and resistivity ρwire = 4.77 μ� · cm [22], we estimated the
wire resistance per crossbar cell Rwire = ρl/wh = 4 �. Since
Rwire was much smaller compared with the remaining resistors
in Fig. 7, it was not included in any of the SPICE simulations.

As shown in Fig. 8, the passive SMLP was presented with
a 14-pixel × 14-pixel image input as a vector of 392 voltage
values between −1 and 1 V (with a 10 mV resolution). These
voltage inputs (along with the bias voltages VB and V ′

B)
propagated through the network, and generated voltage outputs
V ′(0) to V ′(9), each corresponding to a unique digit in [0 9].
Then, the largest voltage was identified, and the corresponding
digit was predicted as the label for the specific input image.
An example of accurate classification is shown in Fig. 8
(row 1), where a voltage-encoded “3” (left) was shown to the
passive SMLP, and the corresponding voltage bar emerged as
the tallest (dark blue bar on the right). Fig. 8 also illustrates an
example of inaccurate classification (row 2), where a voltage
encoded “9” was provided as the input, but the SMLP wrongly

Fig. 9. Classification accuracy of the passive SMLP as a function of lambda
λ and gamma γ , where λ is the ratio of the effective input admittance and
the conductance sum of output PVSs, and γ is the ratio of the effective input
admittance and the conductance of the pull-down resistor in the PRN circuit.

classified it as “4” (dark red bar on the right). Note that from a
hardware implementation standpoint, the millivolt-level SMLP
outputs will need to be amplified before comparison.

As discussed in Section III, the overall accuracy of passive
SMLPs depends on λ and γ . Fig. 9 reveals an optimal range
for λ and a certain upper bound for γ . For very small
values of λ, i.e., λ � 1, the small resistors comprising the
output PVSs draw large currents, and this promotes substantial
deviations in the PRN outputs. On the other hand, for very
large λ, the magnitudes of some of the output conductances
diminish beyond the achievable lower bound, i.e., 1 μS in this
case, thereby leading to inaccurate implementation of SMLP
weights and biases. In the optimal λ regime, we speculate that
a large value of γ /λ promotes the unwanted loading of PRN
outputs by output layer PVSs. Overall, our simulations showed
that the optimal combination of λ = 2 and γ = 3.73 allows
passive SMLPs to achieve an “ideal” classification accuracy
of 95.43%, a performance that is on-par with soft SMLPs,
i.e., 95.87%. Note that the accuracies reported in Fig. 9 may
vary depending upon the exact values of soft weights and
biases obtained from ex situ training and the problem under
consideration.

Using the parameters λ = 2 and γ = 3.73 in the weight-
to-conductance transformations of Section III, we obtained
the target conductances in G, G B , G ′, and G ′

B as well as the
input and bias voltages of the network. In practice, however,
these target values and, consequently, the hardware weights
and biases can only be implemented up to a finite relative
accuracy. From Fig. 10(a), we see that as the “conductance-
programming accuracy” decreases, i.e., when the coefficient of
variation of conductances increases, the classification accuracy
of the passive SMLP decreases from its ideal value (dotted
blue line). Noting that the state of the art in memristor
technologies can implement conductances up to a relative

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 17,2021 at 14:08:18 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ANANTHAKRISHNAN AND ALLEN: ALL-PASSIVE HARDWARE IMPLEMENTATION OF MULTILAYER PERCEPTRON CLASSIFIERS 7

Fig. 10. Performance of passive SMLPs as a function of (a) conductance-,
(b) voltage-, and (c) temperature-induced variations. Error bars indicate
standard deviations across ten simulation runs.

accuracy of 1% [18], [25], we expect passive SMLPs to
achieve accuracies of around 95.3% ± 0.1% even in the
presence of 1% conductance variations [see Fig. 10(a)].
Apart from inaccurate conductances, variations in the input
and bias voltages also influence the passive SMLP per-
formance. Fig. 10(b) confirms that the impact of voltage
disturbances on classification accuracy becomes noticeable
only when the magnitudes of observed variations exceed
20%. However, modern DACs can provide analog input and
bias voltages to relative accuracies better than 1%–2%; thus,

we expect the effect of voltage variations on SMLP accuracy to
be minimal.

Given the temperature dependence of resistor and diode
properties, we investigated the SMLP performance as a func-
tion of operating temperature. From Fig. 10(c), we see that the
SMLP accuracy (green solid line) decreases with increasing
temperature (reference temperature: 27 ◦C). Note that this
simulation assumed the temperature coefficient of resistance
(TCR) of all resistors to be equal to 0.0015 [1/K] [26]. From
Fig. 10(c), we observe that the accuracy obtained by modeling
both diodes and resistors as temperature-dependent elements
(green solid line) is nearly identical to that obtained by
modeling the temperature dependence of diodes only (orange
dotted line). This implies that the SMLP accuracy is relatively
independent of temperature-induced resistance variations [blue
dashed line in Fig. 10(c)], a result that can be explained
by the following key points: 1) passive SMLPs encode soft
weights as conductance ratios, not absolute conductances and
2) normalized changes in resistances have been assumed to
vary linearly with temperature (with a constant TCR) [27].
Note that some resistive RAM technologies [26], [28] exhibit
a more complicated R − T relationship, where the TCR is not
constant but depends on the conductance state, negative values
at low conductances, and positive values at high conductances.
However, even in these cases, we found the SMLP accuracy
trend followed the solid green line in Fig. 10(c).

The sources of performance deviations discussed until now
can be broadly classified as “soft defects” as they do not
catastrophically impact system performances. We now attend
to “hard defects,” which, depending upon the nature of
the defect, can inflict drastic performance degradations. Our
simulations considered stuck at fault (SAF) defects of the
following kinds: 1) stuck-at-open: the device is permanently
in high impedance state and 2) stuck-at-short: the device is
permanently in a low impedance state. We modeled defec-
tive diodes and resistors of types 1) and 2) by replacing
them with large (100 M�) and small (100 �) resistors,
respectively. A comparison of Fig. 11(a) and (b) reveals that
passive SMLPs are more tolerant of faulty diodes than faulty
resistors. In fact, from Fig. 11(a), we see that it is possible
to achieve 80% accuracy even when 50% of the diodes are
stuck-at-open. In both Fig. 11(a) and (b), we notice that
the decline of accuracy with defect rate is sharper in the
case of stuck-at-short faults (dotted green line) than in the
case of stuck-at-open faults (dashed orange line) although
the precise manner of performance degradation is contingent
on important factors such as the selection of forward-biasing
voltage VF [see (20)] for defective and nondefective neurons.
It is important to note that the results in Fig. 11 were
obtained using VF = 0.4 V, a value that was found optimal
for nondefective networks, i.e., networks with a 0% defect
rate. In the case of stuck-at-short resistors, we find that just
1% defective resistors plummeted the classification accuracy
from 95.43% to less than 20%. Although the susceptibility of
neuromorphic hardware to stuck-at-short faults is well known
[29], [30], we expect them to pose a greater challenge for
passive SMLPs that lack interlayer isolation. To improve their
robustness to such hard defects, we adopted a combination

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 17,2021 at 14:08:18 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 11. Performance of passive SMLPs in the presence of (a) defective
diodes and (b) defective resistors where the green dotted lines and orange
dashed lines represent “stuck-at-short” and “stuck-at-open” defects, respec-
tively. “Short-reconfig” (green solid lines) and “Open-reconfig” (orange solid
lines) show the network performances achieved using the proposed three-
pronged fault tolerance strategy. Note that the error bars indicate standard
deviations across ten simulation runs.

of the following software and hardware level fault-tolerance
strategies.

1) Retraining: Having identified defect locations, soft
SMLPs were trained again to evolve a new set of defect-
aware optimal weights for the network [30], [31].

2) Redundancy: To ensure a high probability of obtaining
60 defect-free pull-down resistors, we employed a 4X
redundancy scheme, whereby each ground resistor had
four potential substitutes [31]. Adopting this method
incurs modest hardware overheads as it requires adding
only four additional grounded columns/rows to the
crossbar implementation of the circuit in Fig. 7.

3) Cross Point Fuses: Adding a fuse (or two) in series with
resistors at each cross point is a widely adopted strategy
for mitigating short defects in RRAM cells [32]–[34].
In this case, when a “short” resistor draws large cur-
rents while being programmed, the fuse connected to it
will blow up, thereby disconnecting only that defective

resistor from the PVS circuit. This prevents the outputs
of PVSs containing “short” resistors from being pinned
to erroneous voltage levels during inference. Note that
for, nondefective cross-points, serial fuses will increase
the total cross-point resistance, e.g., by about 800 �
in the case of MnO2 fuses [33]. However, as all the
main resistances in Fig. 7 were much larger than the
fuse resistance, we found the latter did not impact the
passive SMLP performance.

The solid lines in Fig. 11 confirm how the three-pronged
strategy discussed earlier makes passive SMLPs significantly
more resilient to hard defects. In addition to defect-tolerance,
we also evaluated the impact of poor retention characteristics
of memristors, i.e., decay in conductances value over time on
SMLP accuracy. In the absence of detailed state-dependent
retention models, we adopted the first-order approximation
where conductance drift was modeled as a fixed percentage
decrease of all conductances relative to their respective pro-
gramed values [35]. Simulations showed (results not shown
here) that passive SMLPs were robust, and their accuracies
decreased only by about 0.1% and 1.5% for 4X and 9X
decreases in conductances, respectively.

Besides classification accuracy, we note that the areal
footprint, speed, and power consumption are important yard-
sticks for comparing different hardware SMLPs. Based on
demonstrated crossbar implementations of memristors [18]
and diodes [24] that utilize conductive lines with width lw =
0.5 μm, line spacing ls = 0.5 μm, inputs Ninp = 392,
hidden units Nhid = 60, and outputs Nout = 10, we estimate:
1) area of synaptic resistor crossbars Asyn = (lw + ls)

2 ·
[(Ninp × Nhid) + (Nhid × Nout)] = 0.024 mm2; 2) area of
bias and pull-down resistor crossbars Abias = (lw + ls)

2 ·
[N2

hid + (Nhid + Nout) + N2
out] = 0.004 mm2; and 3) area of

the diode Adiode = (lw + ls)
2 · (Nhid × 1) = 6 × 10−5 mm2,

giving us a total area of the computational core Acore =
Asyn + Abias + Adiode

∼= 0.028 mm2. Based on this design,
we estimate that a larger 1568-60-10 network (Ninp similar to
benchmark’s) will occupy Asyn = 0.095 mm2, and therefore,
Acore

∼= 0.1 mm2 (Abias and Adiode values remain the same).
Note that these calculations assume a conservative PLA-like
design based on coplanar synapse and diode crossbars instead
of a fully stacked 3-D configuration amenable to the all-
passive hardware proposed in this article [36]. To evaluate
how fast passive SMLPs can accomplish a single MNIST digit
classification task, we determined the average time delay TD

of the network from the temporal responses of outputs V ′(0)
to V ′(9) when all the input and bias voltages were suddenly
switched on at t = 10 ns (assuming a 1 ns rise time). From Fig.
12, we see that all outputs reached steady states approximately
180 ns after stimulation (dashed black line) giving us TD =
180 ns. With regards to power consumption, we found, based
on the nodal voltages and branch currents, that the passive
SMLP consumes an average static power Pav = 134 mW for
a single classification task. Note that our limited computa-
tional resources precluded the detailed distributed modeling
of nanowire-related parasitic elements, and hence, we did
not include the nanowire resistances (Rwire

∼= 4 �/cell) and
capacitances (wire-substrate and wire-wire estimated at few

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 17,2021 at 14:08:18 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ANANTHAKRISHNAN AND ALLEN: ALL-PASSIVE HARDWARE IMPLEMENTATION OF MULTILAYER PERCEPTRON CLASSIFIERS 9

Fig. 12. Transient response of the passive SMLP when all voltage inputs
are switched on at t = 10 ns (dashed black line depicts one such input with
1 ns rise time). The blue arrow depicts the average time delay of the passive
MLP (∼180 ns).

tens of attofarads [22]) in our speed and power simulations.
Based on literature-reported wire delays (for 5 nm resistive
crossbars) of a few nanoseconds [22], [37], we expect the
total delay in all-passive SMLPs to marginally exceed 180 ns.
This suggests that all-passive SMLPs can retain their speed
advantage at smaller scales too. Also, since Rwire(4 �) is very
small compared with the most conductive resistor (2000 �),
we expect its power dissipation to be negligible. However,
crossbars with much smaller wire-widths than that used in our
simulations (wire-width = 0.5 μm), will have a larger Rwire;
as a result, maintaining sufficiently high output voltages will
require boosting the input and bias voltages.

Compared with the state of the art in “active” neuromor-
phic implementations [38], we find that passive SMLPs are
6.7 times more power-hungry, 2.4 times faster (ideally), and
up to three times more compact. Thus, the average power
delay product per MNIST digit for the passive SMLPs Eav =
PavTMLP = 24 nJ is almost 2.7 times that of the selected bench-
mark. Note that these comparisons are optimistic since they
ignore overheads from the output amplification stage. Based
on their speed advantage, all-passive neuromorphic systems
can be useful in low latency information processing systems
for autonomous lane detection [39], obstacle avoidance [40],
[41], and event-driven motion prediction [42]. Looking ahead,
we expect the next generation of all-passive SMLPs to be
adaptive and capable of unsupervised “online” learning albeit
at the cost of additional circuitry and related overheads [22],
[29], [30], [43].

V. CONCLUSION

This article demonstrated how the combination of shallow
network architectures and rectified-linear activations can be
harnessed to build hardware MLP classifiers from all-passive
building blocks, namely, diode–resistor neurons and resistive

synapses. We identified two nondimensionless parameters that
determine classification performance and showed that for an
optimal choice of these parameters, all-passive MLPs can clas-
sify MNIST digits with 95.43% accuracy. Although passive
MLP performances are susceptible to defects, we identified
fault-tolerance strategies that address this drawback effec-
tively. While this article discusses passive MLP classifiers
only, the work presented here can be extended to all-passive
regressors too, albeit with suitable modifications such as
eliminating offsets in the output voltages. By demonstrating
the possibility of building neuromorphic systems from simple
circuit primitives, this work lays the foundation for more
scalable deep neuromorphic computers.

REFERENCES

[1] B. Chakrabarti et al., “A multiply-add engine with monolithically inte-
grated 3D memristor crossbar/CMOS hybrid circuit,” Sci. Rep., vol. 7,
no. 1, pp. 1–10, Feb. 2017.

[2] D. B. Strukov and R. S. Williams, “Four-dimensional address topology
for circuits with stacked multilayer crossbar arrays,” Proc. Nat. Acad.
Sci. USA, vol. 106, no. 48, pp. 20155–20158, 2009.

[3] S. Bhat, S. Kulkami, J. Shi, M. Li, and C. A. Moritz, “SkyNet:
Memristor-based 3D IC for artificial neural networks,” in Proc.
IEEE/ACM Int. Symp. Nanosc. Archit. (NANOARCH), Jul. 2017,
pp. 109–114.

[4] M. M. Ziegler and M. R. Stan, “CMOS/nano co-design for crossbar-
based molecular electronic systems,” IEEE Trans. Nanotechnol., vol. 2,
no. 4, pp. 217–230, Dec. 2003.

[5] M. R. Stan, P. D. Franzon, S. C. Goldstein, J. C. Lach, and M. M. Ziegler,
“Molecular electronics: From devices and interconnect to circuits and
architecture,” Proc. IEEE, vol. 9, no. 11, pp. 1940–1957, Nov. 2003.

[6] H. Tanaka et al., “A molecular neuromorphic network device consisting
of single-walled carbon nanotubes complexed with polyoxometalate,”
Nature Commun., vol. 9, no. 1, p. 2693, Jul. 2018.

[7] A. Z. Stieg, A. V. Avizienis, H. O. Sillin, C. Martin-Olmos, M. Aono,
and J. K. Gimzewski, “Emergent criticality in complex Turing B-type
atomic switch networks,” Adv. Mater., vol. 24, no. 2, pp. 286–293,
Jan. 2012.

[8] J. M. Tour et al., “Nanocell logic gates for molecular computing,” IEEE
Trans. Nanotechnol., vol. 1, no. 2, pp. 100–108, Jun. 2002.

[9] Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, “Directed assembly
of one-dimensional nanostructures into functional networks,” Science,
vol. 291, no. 5504, pp. 630–633, Jan. 2001.

[10] H. Finkelstein, P. M. Asbeck, and S. Esener, “Architecture and analysis
of a self-assembled 3D array of carbon nanotubes and molecular mem-
ories,” in Proc. 3rd IEEE Conf. Nanotechnol. IEEE-NANO, Aug. 2003,
pp. 441–444.

[11] W. Lu and C. M. Lieber, “Nanoelectronics from the bottom up,” Nature
Mater., vol. 6, no. 11, pp. 841–850, Nov. 2007.

[12] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer
feedforward networks with a nonpolynomial activation function can
approximate any function,” Neural Netw., vol. 6, no. 6, pp. 861–867,
Jan. 1993.

[13] J. Ba and R. Caruana, “Do deep nets really need to be deep,” in Proc.
Adv. Neural Inf. Process. Syst., 2014, pp. 2654–2662.

[14] R. H. Wilkinson, “A method of generating functions of several variables
using analog diode logic,” IEEE Trans. Electron. Comput., vol. EC-12,
no. 2, pp. 112–129, Apr. 1963.

[15] T. E. Stern, Theory of Nonlinear Networks and Systems. New York, NY,
USA: Addison-Wesley, 1965.

[16] M. E. Fouda, S. Lee, J. Lee, A. Eltawil, and F. Kurdahi, “Mask technique
for fast and efficient training of binary resistive crossbar arrays,” IEEE
Trans. Nanotechnol., vol. 18, pp. 704–716, 2019.

[17] F. Alibart, E. Zamanidoost, and D. B. Strukov, “Pattern classification by
memristive crossbar circuits using ex situ and in situ training,” Nature
Commun., vol. 4, no. 1, pp. 1–7, Oct. 2013.

[18] G. C. Adam, B. D. Hoskins, M. Prezioso, F. Merrikh-Bayat,
B. Chakrabarti, and D. B. Strukov, “3-D memristor crossbars for
analog and neuromorphic computing applications,” IEEE Trans. Electron
Devices, vol. 64, no. 1, pp. 312–318, Jan. 2017.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 17,2021 at 14:08:18 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[19] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam,
K. K. Likharev, and D. B. Strukov, “Training and operation of an
integrated neuromorphic network based on metal-oxide memristors,”
Nature, vol. 521, no. 7550, pp. 61–64, May 2015.

[20] I. Boybat et al., “Neuromorphic computing with multi-memristive
synapses,” Nature Commun., vol. 9, no. 1, pp. 1–12, Dec. 2018.

[21] M. D. Stamate, “Dielectric properties of TiO2 thin films deposited by a
DC magnetron sputtering system,” Thin Solid Films, vol. 372, nos. 1–2,
pp. 246–249, Sep. 2000.

[22] M. E. Fouda, A. M. Eltawil, and F. Kurdahi, “Modeling and analysis
of passive switching crossbar arrays,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 65, no. 1, pp. 270–282, Jan. 2018.

[23] M.-J. Lee et al., “2-stack 1D-1R cross-point structure with oxide diodes
as switch elements for high density resistance RAM applications,” in
IEDM Tech. Dig., Jan. 2007, pp. 771–774.

[24] B. S. Kang et al., “High-current-density CuO x /InZnOx thin-film diodes
for cross-point memory applications,” Adv. Mater., vol. 20, no. 16,
pp. 3066–3069, 2008.

[25] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, “High precision
tuning of state for memristive devices by adaptable variation-tolerant
algorithm,” Nanotechnology, vol. 23, no. 7, Feb. 2012, Art. no. 075201.

[26] J. Borghetti, D. B. Strukov, M. D. Pickett, J. J. Yang, D. R. Stewart, and
R. S. Williams, “Electrical transport and thermometry of electroformed
titanium dioxide memristive switches,” J. Appl. Phys., vol. 106, no. 12,
pp. 1–5, 2009.

[27] F. M. Bayat, M. Prezioso, B. Chakrabarti, H. Nili, I. Kataeva, and
D. Strukov, “Implementation of multilayer perceptron network with
highly uniform passive memristive crossbar circuits,” Nature Commun.,
vol. 9, no. 1, pp. 1–7, Dec. 2018.

[28] F. Miao et al., “Anatomy of a nanoscale conduction channel reveals
the mechanism of a high-performance memristor,” Adv. Mater., vol. 23,
no. 47, pp. 5633–5640, Dec. 2011.

[29] F. M. Bayat, M. Prezioso, B. Chakrabarti, I. Kataeva, and D. Strukov,
“Memristor-based perceptron classifier: Increasing complexity and cop-
ing with imperfect hardware,” in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Design (ICCAD), Nov. 2017, pp. 549–554.

[30] C. Li et al., “Efficient and self-adaptive in-situ learning in multilayer
memristor neural networks,” Nature Commun., vol. 9, no. 1, pp. 7–14,
Dec. 2018.

[31] L. Xia et al., “Stuck-at fault tolerance in RRAM computing systems,”
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 1, pp. 102–115,
Mar. 2018.

[32] H. W. Cheng et al., “A novel rewritable one-time-programming OTP
(RW-OTP) realized by dielectric-fuse RRAM devices featuring ultra-
high reliable retention and good endurance for embedded applications,”
in Proc. Int. Symp. VLSI Technol., Syst. Appl. (VLSI-TSA), Apr. 2018,
pp. 1–2.

[33] M. M. Zhang, J. Yang, and R. S. Williams, “Protective elements for
non-volatile memory cells in crossbar arrays,” U.S. Patent 10 147 762,
Dec. 4, 2018. [Online]. Available: https://patents.google.com/patent/
US10147762B2

[34] L. T. Tran, T. C. Anthony, and F. A. Perner, “One-time programmable
memory using fuse/anti-fuse and vertically oriented fuse unit mem-
ory cells,” U.S. Patent 6 584 029, Jun. 24, 2003. [Online]. Available:
https://patents.google.com/patent/US6584029B2

[35] S. Gi, I. Yeo, M. Chu, S. Kim, and B. Lee, “Fundamental issues of
implementing hardware neural networks using memristor,” in Proc. Int.
SoC Design Conf. (ISOCC), Nov. 2015, pp. 215–216.

[36] A. Dehon, “Nanowire-based programmable architectures,” ACM J.
Emerg. Technol. Comput. Syst., vol. 1, no. 2, pp. 109–162, Jul. 2005.

[37] C. Yakopcic, R. Hasan, T. M. Taha, and D. Palmer, “SPICE analysis
of dense memristor crossbars for low power neuromorphic processor
designs,” in Proc. Nat. Aerosp. Electron. Conf. (NAECON), Jun. 2015,
pp. 305–311.

[38] F. Merrikh-Bayat, X. Guo, M. Klachko, M. Prezioso, K. K. Likharev,
and D. B. Strukov, “High-performance mixed-signal neurocomputing
with nanoscale floating-gate memory cell arrays,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 10, pp. 4782–4790, Oct. 2018.

[39] S. Kim and T.-G. Chang, “Neuromorphic hardware accelerated lane
detection system,” IEICE Trans. Inf. Syst., vol. E100.D, no. 12,
pp. 2871–2875, 2017.

[40] L. Salt, G. Indiveri, and Y. Sandamirskaya, “Obstacle avoidance with
LGMD neuron: Towards a neuromorphic UAV implementation,” in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), May 2017, pp. 1–4.

[41] C. Wang et al., “A braitenberg vehicle based on memristive neu-
romorphic circuits,” Adv. Intell. Syst., vol. 2, no. 1, Jan. 2020,
Art. no. 2070001.

[42] H. Akolkar, S. Ieng, and R. Benosman, “Real-time high speed motion
prediction using fast aperture-robust event-driven visual flow,” 2018,
arXiv:1811.11135. [Online]. Available: http://arxiv.org/abs/1811.11135

[43] C. D. Schuman et al., “A survey of neuromorphic computing and neural
networks in hardware,” 2017, arXiv:1705.06963. [Online]. Available:
http://arxiv.org/abs/1705.06963

Akshay Ananthakrishnan received the B.E. degree
(Hons.) in mechanical engineering from the Birla
Institute of Technology and Science, Pilani, India,
in 2013, and the M.S. degree in mechanical engi-
neering and applied mechanics from the University
of Pennsylvania, Philadelphia, PA, USA, in 2015,
where he is currently pursuing the Ph.D. degree in
mechanical engineering and applied mechanics.

His current research interests include the design
and fabrication of neuromorphic systems and neural
electrodes.

Mark G. Allen (Fellow, IEEE) received the B.A.
degree in chemistry, the B.S.E. degree in chemi-
cal engineering, and the B.S.E. degree in electrical
engineering from the University of Pennsylvania,
Philadelphia, PA, USA, both B.S.E. in 1984, and
the M.S. and Ph.D. degrees from the Massachusetts
Institute of Technology, Cambridge, MA, USA, in
1986 and 1989, respectively.

In 1989, he joined the Faculty of the School
of Electrical and Computer Engineering, Georgia
Institute of Technology (Georgia Tech), Atlanta, GA,

USA, ultimately holding the rank of Regents’ Professor and the J.M. Pettit
Professorship in microelectronics, as well as a joint appointment with the
School of Chemical and Biomolecular Engineering. In 2013, he left Georgia
Tech to become the Alfred Fitler Moore Professor of Electrical and Systems
Engineering and Scientific Director of the Singh Nanotechnology Center,
University of Pennsylvania, Philadelphia, PA, USA. He is a Co-Founder
of multiple micro-electro-mechanical systems (MEMS) companies, including
Cardiomems, Atlanta, Axion Biosystems, Atlanta, and Enachip, Jamesburg,
NJ, USA. His research interests are in the development and application of
new microfabrication and nanofabrication technologies, as well as MEMS.

Dr. Allen received the IEEE 2016 Daniel P. Noble Award for contributions
to research and development, clinical translation, and commercialization of
biomedical microsystems. He was the Co-Chair of the IEEE/ASME MEMS
Conference. He was the Editor-in-Chief of the Journal of Micromechanics
and Microengineering.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on March 17,2021 at 14:08:18 UTC from IEEE Xplore. Restrictions apply.

