
Nonlinear sensitivity enhancement of resonant microsensors and its application to low power

magnetic sensing

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 J. Micromech. Microeng. 21 045004

(http://iopscience.iop.org/0960-1317/21/4/045004)

Download details:

IP Address: 130.207.50.192

The article was downloaded on 23/03/2011 at 15:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0960-1317/21/4
http://iopscience.iop.org/0960-1317
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF MICROMECHANICS AND MICROENGINEERING

J. Micromech. Microeng. 21 (2011) 045004 (12pp) doi:10.1088/0960-1317/21/4/045004

Nonlinear sensitivity enhancement of
resonant microsensors and its application
to low power magnetic sensing
Seungkeun Choi, Yong-Kyu Yoon1, Seong-Hyok Kim and Mark G Allen

School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive
NW, Atlanta, GA 30332, USA

E-mail: seungkeun.choi@gatech.edu and mallen@gatech.edu

Received 14 November 2010, in final form 21 January 2011
Published 25 February 2011
Online at stacks.iop.org/JMM/21/045004

Abstract
Nonlinearities in resonating structures can be used to increase the sensitivity of sensors based
on these structures. An example system, a torsional resonant magnetic sensor, is analyzed to
illustrate the effect. The system is composed of a disk-type silicon resonator combined with a
permanent magnet supported by multiple micromachined silicon beams, excitation and
sensing coils, and a magnetic feedback loop. The effects of nonlinearity on sensitivity have
been characterized as a function of beam width and the number of beams using analytical
models as well as numerical analysis. By increasing the number of beams while reducing the
beam width (and thereby maintaining constant nominal linear resonant frequency), large
nonlinearity has been obtained, resulting in an increased change in operating resonant
frequency per unit applied magnetic field. The interaction between an external magnetic field
surrounding the sensor and the permanent magnet generates a rotating torque on the silicon
resonator disk, changing the effective stiffness of the beams and therefore the resonant
frequency of the sensor. By monitoring shifts in the resonant frequency while changing the
orientation of the sensor with respect to the external magnetic field, the direction of the
external magnetic field can be determined. Self-resonance-based electromagnetic excitation of
the mechanical resonator enables it to operate with very low power consumption and low
excitation voltage. A total system power consumption of less than 140 μW and a resonator
actuation voltage of 1.4 mVrms from a ±1.2 V power supply have been demonstrated with a
sensitivity of 0.28 Hz/rotational degree to the Earth’s magnetic field.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

MEMS-based mechanically resonant sensors, in which
the sensor resonant frequency shifts in response to the
measurand, are widely utilized [5]. Resonant sensors with
frequency output are of particular interest, as frequency
can be measured with high precision. Such sensors are
typically operated in their linear resonant regime. However,
substantial improvements in the resonant sensors’ performance
(functionally defined as the change in resonant frequency per

1 Present address: Department of Electrical and Computer Engineering,
University of Florida, 217 Benton Hall, Gainesville, FL 32611.

unit measurand change) can be obtained by designing the
sensors to operate far into their nonlinear regime [10, 18, 20].
Significant efforts have been focused on understanding the
nonlinearity associated with the large oscillation amplitude of
resonators, and tuning it externally [18, 20]. For example,
Kozinsky et al use a nonlinear model with a third-order
Taylor series expansion of the electrostatic forcing applied
to a nanoresonator in order to tune the effective Duffing
coefficient using an external electrostatic potential. They are
able to tune nonlinearity and, consequently, the dynamic range
and resonant frequency of nanomechanical resonators [20].
However, less attention has been given to how nonlinearity can
be increased by changing the resonator geometry, and how to
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exploit the increasing nonlinearity to increase the sensitivity
of resonant sensors.

As an example, consider a magnetic field sensor for
detecting the Earth’s magnetic field. Such an electronic
compass system is finding applications in ultra-low-power
mobile devices, such as wristwatches, smart phones, and
portable global positioning systems (GPS). Hence, developing
a small-size, low-power-consumption, and low-operation-
voltage magnetic field sensor that can detect the direction of
the Earth’s magnetic field is of great interest.

Even though there have been a variety of approaches to
the electronic compass successfully demonstrated [8, 23, 24],
such as Hall-effect sensors [27, 31, 32, 39], fluxgate [2–4, 11,
13, 16, 25, 26, 28, 29, 33–35], anisotropic magnetoresistance
(AMR) sensors [30, 31, 36, 37, 40], giant magnetoresistance
sensors [31, 36, 37], resonant magnetic sensors [1, 5–7, 12,
15, 19, 21, 38], and magnetometers [17, 41], the realization of
extremely low power electronic compasses has been elusive.

Earlier, we reported an electrostatically excited, epoxy-
based micromachined resonant magnetic field sensor that
exhibited very low power consumption with sensitivity
sufficient to measure the Earth’s magnetic field [22]. A
resonant comb drive structure was fabricated with a photo-
definable epoxy (SU-8) and a permanent magnet (NdFeB) was
glued onto the center of the comb drive disk. The interaction
between an external magnetic field and the permanent magnet
causes a shift in the fundamental resonant frequency (fc)
of the device. Although the operating voltage was lower
(∼10 V) compared to most of the other electrostatic-based
sensors, the limited thermal and mechanical stabilities of
SU-8 were drawbacks. Alternatively, we demonstrated
a low-driving voltage (100 mV) and CMOS-compatible
silicon-based resonant magnetic field sensor incorporating a
permanent magnet, an external coil for the excitation, and
an assembled Hall-effect sensor for the detection. However,
it consumed significant power mainly due to the Hall-effect
sensor [9].

This paper presents a complete magnetic sensing system
that consumes less than 200 μW of power in continuous
operation, and is capable of sensing the Earth’s magnetic field.
The system is composed of a micromachined silicon resonator
combined with a permanent magnet, excitation and sensing
coils, and a magnetic feedback loop for the completion of
the system. This effect is illustrated through the use of a
magnetically torqued, rotationally resonant MEMS platform.
Platform structural parameters, such as the beam width and
the number of beams, are parametrically varied subject to the
constraint of constant small-deflection resonant frequency.

2. Device concept and theoretical modeling

Consider a permanent magnet torsionally supported on a
resonant disk, which is in turn supported by flexures (figure 1).
The interaction between an external magnetic field H such
as the Earth’s magnetic field and the magnetization of the
permanent magnet M generates a torque that deflects and may
change the stiffness of the beam, resulting in a change in the
resonant frequency of the sensor (figure 1).

Resonator
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lb
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M

H T
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position

Resonator
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tb
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Figure 1. A silicon resonator structure with a permanent magnet. M
is the magnetization direction of the magnet, H is the direction of the
external magnetic field, α is the rotational angle of the permanent
magnet, ϕ is the small oscillation angle at resonance, and θ is the
angle between H and M. lb, wb, and tb are the beam length, beam
width, and beam thickness, respectively. Torque (T) is generated on
the silicon resonator disk due to the interaction between M and H.

When the magnetization (M) and the external magnetic
field (H) are not perfectly aligned (θ is neither 0◦ nor 180◦),
the center disk rotates by an angle α due to the magnetic torque
(T) (figure 1) to reach the equilibrium position. This angle is
determined by solving the equilibrium equation, stating that
the torques acting on the system must sum to zero,

klα − T0 sin (θ − α) = 0, (1)

where kl is the torsional linear stiffness coefficient of the
beams and T0, the maximum amplitude of the magnetic torque,
is given by equation (2) for a magnet of volume V and
magnetization M.

T0 = μ0MV H, (2)

where μ0 = 4π × 10−7 H m−1 is the permeability of free space.
In the case of large rotation angles, the beams are subject to
large deflections and their load-deflection behavior is no longer
linear [14]. A cubic term multiplied by a torsional nonlinear
stiffness coefficient, knl, has to be added to the equilibrium
equation,

klα + knlα
3 − T0 sin (θ − α) = 0. (3)

Nonlinear effects have to be taken into account whenever
the deflection (approximated to the product of the angle
of deflection, α, and the radius of the center disk, r) is
comparable to or larger than the width of one beam, wb [14].
The beams tend to stiffen as the angular deviation increases.
Hence, the resonator oscillating around the new equilibrium
position, α, exhibits a higher resonant frequency. Assuming
a torsional vibratory system with a single degree of freedom,
the expression for the fundamental resonant frequency of the
sensor is obtained by solving the differential equation satisfied
by the angle of oscillation, ϕ [22],

I ϕ̈ + kl (α + ϕ) + knl (α + ϕ)3 = T0 sin (θ − (α + ϕ)) , (4)

where I is the platform moment of inertia of the system. For
small oscillation angles of ϕ, equation (4) becomes

I ϕ̈ + (kl + 3knlα
2 + T0 cos(θ − α))ϕ

= T0 sin(θ − α) − klα − knlα
3. (5)
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Figure 2. (a) Clamped-guided beam model to find lateral linear (kδ,l) and nonlinear (kδ,nl) stiffness coefficients, and (b) disk-type resonator
and torsional linear (kl) and nonlinear (knl) stiffness coefficients.

Hence, when the magnetization and the external magnetic
field are not perfectly aligned, the resonant frequency of the
system is

fc = 1

2π

√
kl + 3knlα2 + T0 cos (θ − α)

I
. (6)

To solve this equation, kl, knl, and the relationship between
θ and α have to be determined. Figure 2 shows that kl and knl

can be approximated by the nonlinear equations of the beam
that has one end clamped and the other end guided subject to
large deflection [14].

When the direction of magnetization is parallel to the
external field, the magnetic torque is zero and the static
resonator does not experience any rotation, i.e. α = 0.
However, when the resonator is oscillating, the torque
increases as the rotational resonator is pulled away from
its equilibrium position. Assuming small oscillation and
negligible damping, equation (4) can now be expressed as

I ϕ̈ + klϕ − T0 sin (θ − ϕ) = 0. (7)

Hence, when the direction of magnetization is parallel to
the external field, the expression of the resonant frequency is
given by

fc = 1

2π

√
kl + T0 cos θ

I
, (8)

where θ is 0◦ or 180◦.
Numerical values of the torsional linear (kl) and nonlinear

(knl) stiffness coefficients are obtained by considering the
torque and force relationship, as shown in figure 2,

T = klα + knlα
3 = P · r = kδ,l · r · δ + kδ,nl · r · δ3, (9)

= kδ,l · r2 · α + kδ,nl · r4 · α3. (10)

Therefore, the torsional linear (kl) and nonlinear stiffness
(knl) coefficients of the resonator with the number of beams
(Nb) are

kl = Nbkδ,lr
2 and knl = Nbkδ,nlr

4. (11)

The deflection δ for a concentrated load P at the end of a
beam of length lb, thickness tb, mass moment of inertia I, and
elastic modulus E where the loaded end of the beam is guided,
as shown in figure 2(a), can be found by simultaneously
solving the following equations [14],

P = E · tb · w4
b

3 · l3
b

√
2

3
u3

(
3

2
− 1

2
tanh2 u − 3

2

tanh u

u

)− 1
2

,

(12)

δ = wb

√
2

3
(u − tanh u) .

(
3

2
− 1

2
tanh2 u − 3

2

tanh u

u

)− 1
2

,

(13)

u =
√

N

EI

(
lb

2

)
, (14)

where N is the normal force that develops in the beam as
a result of the applied force. The numerical values for the
applied force (P) and the deflection (δ) are calculated at a
given u (12)–(14). As a result, the force (P) can be expressed
as a function of the deflection (δ). The functional relationship
between deflection and force is described using the following
equation,

P = kδ,lδ + kδ,nlδ
3, (15)

where kδ,l and kδ,nl are lateral linear and nonlinear stiffness
coefficients of a single beam with one end clamped and one
end guided, respectively. Equation (15) is further modified to
find the stiffness coefficients easily as

P

δ
= kδ,nlδ

2 + kδ,l. (16)

The theoretical analysis is performed on a silicon
micromechanical resonator, which consists of a permanent
magnet torsionally supported by four beams. The sensitivity
of the resonator is characterized by varying the width of
the beams (10, 20 and 30 μm). All other parameters are
listed in table 1. A cylindrical permanent magnet is used
throughout modeling and measurement (figure 1). Figure 3
shows plots from (16) where lateral linear (kδ,l) and nonlinear
(kδ,nl) stiffness coefficients are found. The nonlinear stiffness
coefficient (kδ,nl) is the slope of this curve and the linear
stiffness coefficient (kδ,l) is the intercept of the curve with
the y axis. The torsional stiffness of the beams, kl and knl, are
calculated using (11). The inset in figure 3 shows the nonlinear
deflection of a beam. T0 are 7.6 × 10−8, 1.5 × 10−6, and 2.9 ×
10−6 N m for the external magnetic fields 50 μT, 0.975 mT,
and 1.95 mT, respectively.

Once kl and knl are found, the nonlinear equation (3) is
solved numerically with MATLAB to find the deviation angle
(α) as a function of θ . Finally, the resonant frequency is
calculated using (6). Figures 4(a) and (b) show the plot of
α (in degree) as a function of θ (in degree) and the resonant
frequency of the magnetic field sensor as a function of θ for
the beam width of 20 μm. As the external magnetic field

3
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Table 1. Parameters used for theoretical analysis.

Young’s modulus silicon (Esi) (GPa) 165 Young’s modulus magnet (Emagnet) (GPa) 152
Density of silicon (kg m−3) 2330 Density of magnet (kg m−3) 7440
Beam thickness (tb) (μm) 200 Magnet radius (rm) (μm) 800
Beam width (wb) (μm) 10, 20, 30 Magnet thickness (tm) (μm) 800
Beam length (lb) (mm) 2 Number of beams 4
Center disk radius (rsi) (mm) 1 Mass moment of inertia (kg m2) 3.3 × 10−12
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Figure 3. A nonlinear deflection of a single beam where one end is
clamped and the other end is guided. The lateral nonlinear stiffness
coefficient (kδ,nl) corresponds to the slope and the lateral linear
stiffness coefficient (kδ,l) is found at the intercept δ2 = 0. The inset
shows the nonlinear dependence of the deflection on the applied
force.

increases, both the deviation angle and the resonant frequency
increase at a given θ due to the increased rotational torque.

For resonators with three different beam widths, the
numerical values of kl and knl are listed in table 2 along
with resonant frequencies and the normalized sensitivities
calculated at external magnetic fields of 50 μT, 0.975 mT,
and 1.95 mT. The normalized sensitivity is defined as the
difference between the maximum resonant frequency (f max)
and minimum resonant frequency (f min) divided by the
minimum resonant frequency (f min), as the resonator is
rotated between θ = 0◦ and 90◦. The effect of increasing
nonlinearity sensitivity can be argued from (6). Consider
first the calculation of f min. According to (8), the minimum
resonant frequency (f min) occurs at θ = 0◦, where the torque
T0 is zero because the direction of magnetization is parallel
to the external field. As T0 increases from zero, both linear
(kl) and nonlinear (knl) terms of (6) additively increase the
resonant frequency. Therefore, the normalized sensitivity,
(f max – f min)/f min per rotational degree, will be larger if
the nonlinear terms are present. This will be developed more
rigorously below.

2.1. Case 1: 3knl · α2 is larger than T0 · cos(θ – α)

When the magnitude of 3knl · α2 is larger than the magnitude of
T0 · cos(θ – α) in (6), the resonant frequency curve resembles
the shape of an |α| curve. The |α| curve is symmetric with
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Figure 4. (a) Variation in the deviation angle (α) and (b) variation
in the resonant frequency as a function of θ at the external magnetic
fields of 50 μT, 0.975 mT, and 1.95 mT. The simulation model has
four beams and a beam width of 20 μm. The difference between the
maximum and minimum resonant frequencies divided by the
minimum resonant frequency over θ = 0◦ and 90◦ is taken as a
measure of sensor performance.

respect to θ = 180◦ and has two peaks at 90◦ and 270◦. The |α|
curve is also symmetric with respect to θ = 90◦ and θ = 270◦

in the range of 0◦–180◦ and 180◦–360◦, respectively. This
is the case when the external magnetic fields are 0.975 and
1.95 mT for all three beam widths (wb = 10, 20, and 30 μm)
and when the beam width is 10 μm at the external magnetic
field of 50 μT, as shown in table 2. The numerical values of
3knl · α2 and T0 · cos(θ – α) are plotted in figures 5(a), (c) and
(e) for the beam widths of 10, 20, and 30 μm, respectively.
This shows that the magnitude of 3knl · α2 is larger than the
magnitude of T0 · cos(θ – α) and this magnitude difference
becomes large as the beam width decreases. Even though
the nonlinear stiffness coefficient (knl) decreases as the beam
width decreases (table 2), the product of knl and α2 increases
because α2 increases at a faster rate, as shown in figure 6.
Accordingly, the resonant frequency curves resemble the shape
of |α| (figures 5(b), (d) and (f )) and the normalized sensitivity
increases as the beam width
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Figure 5. Comparison of 3knl · α2 and T0 · cos(θ – α) for the beam widths of (a) 10, (c) 20, and (e) 30 μm and the resonant frequency curves
for the beam widths of (b) 10, (d) 20, and (f ) 30 μm at various external magnetic fields.

Table 2. Effects of the beam width on sensitivity. The difference between the maximum and minimum resonant frequencies divided by the
minimum resonant frequency between θ = 0◦ and 90◦ is taken as a measure of sensor performance. Also refer to figures 5, 7 and 8.

�fc/(fc degree)
(mHz (Hz degree)−1)

Beam width (μm) kl (10−6 N m) knl (10−3 N m) Resonant frequency at θ = 0◦ (Hz) 50 μT 0.975 mT 1.95 mT

10 16.56 91.2 358.3 1.5 21.5 27.8
20 132.13 187 1009.4 0.0112 2.0 4.88
30 445.48 316 1853.5 0.000 94 0.11 0.44

decreases. The normalized sensitivity also increases as the
external magnetic field increases because of the higher torque,
which causes f max to increase at a given beam width (table 2).

2.2. Case 2: 3knl · α2 is comparable to T0 · cos(θ – α)

This is the case when the beam width is 20 μm and the external
magnetic field is 50 μT, as shown in table 2. The magnitudes
of 3knl · α2 and T0 · cos(θ – α) are in the same order as shown in
figure 7(a). The resonant frequency curve is similar to case 1
except that the resonant frequency at θ = 180◦ is much lower

than when θ = 0◦ since the magnitude of the T0 · cos(θ – α) is
minimal at θ = 180◦ (figure 7(b)).

2.3. Case 3: 3knl · α2 is smaller than T0 · cos(θ – α)

This is the case when the beam width is 30 μm at the external
magnetic field of 50 μT, as shown in table 2. Figure 8(a)
shows that T0 · cos(θ – α) is larger than 3knl · α2 in
magnitude. Accordingly, the resonant frequency curve is
mainly determined by T0 · cos(θ – α), as shown in figure 8(b).
For the previous cases, the highest resonant frequency occurs
at θ = 90◦ and 270◦. However, for this case, the highest

5
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resonant frequency occurs at θ = 0◦ (= 360◦) due to the larger
magnitude of T0 · cos(θ – α) than 3knl · α2. The normalized
sensitivity, calculated between θ = 0◦ and 180◦, is very small
compared to the first two cases. This implies that in order to
maximize the sensitivity, 3knl · α2 has to be larger than T0 ·
cos(θ – α) at a given torque T0.

3. Enhancing sensing performance by exploiting
nonlinear effects

In the previous sections, the sensing performance is
characterized by varying the beam width while other
parameters are held constant. Based on the discussions in
cases 1, 2, and 3, higher sensing performance can be achieved
when the magnitude of knl · α2 is greater than that of T0 ·
cos(θ – α). This can be achieved by lowering the torsional
linear stiffness, kl, thereby increasing the deviation angle,
α, at a given torque. Although knl decreases as the beam
width decreases, the product of knl and α2 increases since α2

increases at a faster rate. Minimization of kl can be achieved
by either increasing the length of the beam or reducing the
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Figure 7. (a) Comparison of 3knlα
2 and T0 · cos(θ – α) for the beam width of 20 μm at the external magnetic field of 50 μT. Note that

3knlα
2 is comparable to T0 · cos(θ – α) in magnitude. (b) Resonant frequency as a function of θ .

width of the beam. In both cases, the mechanical resonator
becomes more susceptible to shocks and vibrations and can
easily be broken.

Sensing performance can also be improved by maximizing
the nonlinear stiffness coefficient (knl), as was discussed
before. For example, when the linear stiffness is determined,
the sensitivity is maximized by increasing the nonlinearity
[10]. One way of increasing knl while keeping kl constant
is to design the mechanical resonator with thinner beams
while increasing the number of beams. Thinner beams make
kl smaller; however, this is compensated with more beams,
which bring the linear stiffness (kl) of the resonator back to
its original value in order to maintain mechanical stability.
Furthermore, nonlinearity increases as well because the ratio
of deflection to beam width increases. In other words, even
at the same amount of deflection, each beam undergoes more
stress since the deflection with respect to its width increases,
thereby increasing the nonlinearity of the system [14].

To illustrate this, three different resonator geometries are
chosen, as shown in figure 9, and analyzed, where the numbers
of beams and the widths of beams are simultaneously adjusted
such that their linear stiffness coefficients are the same. The
selected numbers of beams are 4, 8, and 16 and their widths
are 20, 15.9, and 12.6 μm, respectively.

The deflection versus force curves are plotted for these
resonators in the inset of figure 10. The structure with
16 beams exhibits the highest nonlinearity followed by eight-
beam and four-beam structures in that order. The lateral
linear stiffness coefficients (kδ,l) are found to be 33, 16.5,
and 8.3 N m−1 for 4, 8, and 16 beams, respectively. Note that
kδ,l in figure 10 is obtained from a single beam. Therefore,
the overall kδ,l of the resonator is calculated by multiplying
it with the number of beams. The lateral nonlinear stiffness
coefficients (kδ,nl) are found to be 4.7 × 1010, 3.6 × 1010,
and 2.9 × 1010 N m for 4, 8, and 16 beams, respectively.
Hence, by using (11), the torsional linear stiffness coefficients
(kl) are calculated to be 132.13, 132.28, and 132.47 μN
m for 4, 8, and 16 beams, respectively, and the torsional
nonlinear stiffness coefficients (knl) are calculated to be 187,
291, and 462 mN m for 4, 8, and 16 beams, respectively.
Table 3 summarizes the simulation results, including resonator
dimension.
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Figure 9. Three different resonator geometries with (a) 4 beams (wb = 20 μm), (b) 8 beams (wb = 15.9 μm), and (c) 16 beams
(wb = 12.6 μm).

Table 3. Effects of resonator geometries (beam width and number of beams) on sensitivity. The difference between the maximum and
minimum resonant frequencies divided by the minimum resonant frequency between θ = 0◦ and 90◦ is taken as a measure of sensor
performance.

Sensitivity �fc/(fc · degree)
(mHz (Hz degree)−1)

Number Beam kl knl Resonant frequency
of beams width (μm) (10−6 N m) (10−3 N m) at θ = 0◦, fc (Hz) 50 μT 0.975 mT 1.95 mT

4 20 132.13 187 1009.38 0.0112 2.001 4.879
8 15.9 132.28 291 1009.95 0.0153 2.756 6.157
16 12.6 132.47 462 1010.68 0.022 3.727 7.659

As shown in table 3, the torsional linear stiffness
coefficients, kl, are set to be very close for the three designs
by adjusting the beam width and the number of beams
simultaneously. The four-beam resonator with a 20 μm beam
width shows slightly lower kl than the other two designs. As
a result, the resonant frequency of the four-beam resonator
is lowest among them. However, the torsional nonlinear
stiffness coefficient, knl, increases as more beams are used.
It is worthwhile mentioning that the narrower beam widths
are used as more beams are added in order to increase the
nonlinearity of a resonator while keeping its linear stiffness
unchanged. Deviation angles are calculated using (3) and
shown in figure 11(a). The deviation angle (α) becomes large
as fewer beams are used where beam widths are simultaneously
increased. Although the magnitude of α decreases as knl

increases at a given θ , the product of knl and α2 becomes large

as knl increases at a given θ since knl increases at a faster rate, as
shown in figure 11(b). The resonant frequencies are evaluated
at 50 μT, 0.975 mT, and 1.95 mT for the three structures
(figures 12(a) and (b)). In all cases, the higher the knl, the
higher the sensitivity (table 3). Therefore, the concept of
increasing the sensitivity by increasing the nonlinear stiffness
coefficient at a given linear stiffness is demonstrated.

4. Silicon resonator fabrication and measurement

A test device to exploit the preceding phenomenon, a MEMS-
based magnetic compass, was designed and fabricated.
Fabrication includes two major processes: (1) fabrication of
the mechanical resonator using inductively coupled plasma
(ICP) silicon etching; and (2) assembly of the permanent
magnet. The mechanical resonator fabrication is based
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Figure 10. A nonlinear deflection of a single beam where one end is
clamped and the other end is guided. The lateral nonlinear stiffness
coefficient (kδ,nl) corresponds to the slope and the lateral linear
stiffness coefficient (kδ,l) is found at the intercept δ2 = 0. The inset
shows the nonlinear dependence of the deflection on the applied
force. The torsional linear (kl) and nonlinear (knl) stiffness
coefficients are calculated by (11).

on a two-mask, single-wafer silicon bulk micromachining
process. A bottom recess is created by etching the bottom
side of a silicon wafer to achieve a preferred beam thickness
(figure 13(a)). Then, the top-side silicon wafer is etched
to form a movable resonant disk, a recess for a permanent
magnet, and support beams (figures 13(a) and (b)). ICP
etching (Plasma-Therm ICP) is used for these silicon etching
processes. Figure 13(b) shows a scanning electron microscopy
(SEM) image of the fabricated device, which has eight beams
with a beam width of 13.1 μm, a beam length of 2 mm, and
a beam thickness of 110 μm. The neodymium–iron–boron
(NdFeB) permanent magnet is adhered to the center of the
resonator disk (figure 13(c)). Excitation and detection coils
are hand wound on plastic tubes with a diameter of 1.5 mm
and hybrid-assembled with the sensor (figure 13(d)). The
number of turns is 300 for both the excitation and detection
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Figure 11. Deviation angles (α) and 3knl · α2 for 4-, 8-, and 16-beam structures simulated at an external magnetic field of 1.95 mT. (a)
Deviation angle (α) as a function of θ . (b) Magnitude of 3knl · α2 as a function of θ .

coils. The excitation and detection coils are placed in the same
plane, thereby maximizing the magnetic flux linkage between
the permanent magnet and the detection coil. The crosstalk
between the two coils is negligible in the positive closed loop
configuration.

The resonator is embedded within a positive feedback
loop to form a self-resonant oscillator system (figure 14) [38].
In this configuration, the resonator is forced to oscillate at
its resonant frequency without an externally applied driving
signal. This type of configuration is useful in resonant sensing
applications if the resonance frequency is the output signal of
interest, and will be used to determine the sensitivity of the
resonant sensor to magnetic field.

The excitation coil generates a time-varying magnetic
field around the permanent magnet. The resonator oscillates
if the natural frequency of the resonator is matched with
the frequency of the time-varying magnetic field generated
by the excitation coil. Accordingly, the permanent magnet
adhered to the oscillating resonator also generates a time-
varying magnetic field. The mechanical resonator works
as a frequency-determining element in a self-oscillating
amplifying feedback loop. The detection coil induces a
voltage from this time-varying magnetic field generated by
the oscillating permanent magnet. The output of the detection
coil is connected to the input of the positive closed-loop circuit
which consists of an amplifier, a phase shifter, and a Schmitt
trigger. The output signal of the detection coil is amplified with
the amplifier and then passed through the phase shifter and the
Schmitt trigger. The phase shifter adjusts the phase of the
closed loop such that the output signal of the detection coil is
fed into the excitation coil in phase to form a positive feedback.
The condition for a positive feedback is that a portion of the
output is combined in phase with the input. The Schmitt
trigger improves noise immunity and thus limits the peak-
to-peak magnitude of the excitation signal to prevent large
oscillation of the resonator. A frequency counter is connected
at the end of the circuitry to read the resonant frequency of the
resonator. An external magnetic field is applied through two
Helmholtz coils.

The excitation coil utilized 1.4 mVrms with a total power
consumption of 0.24 μW. The remaining circuitry, excluding
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Figure 12. Simulated resonant frequencies for three different designs; 4 beams (wb = 20 μm), 8 beams (wb = 15.9 μm), and 16 beams
(wb = 12.6 μm). (a) B = 50 μT, (b) B = 0.975 mT, and (inset) B = 1.95 mT.
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Figure 13. Silicon resonator fabrication: (a) ICP etching bottom and top silicon surface, (b) SEM image of resonator with eight beams,
(c) permanent magnet assembly, and (d) assembly of excitation and sensing coils.

the frequency counter, utilized low power op-amps from
Analog Devices (OP 490) with a power consumption of
138 μW. The total power consumption was therefore less than
140 μW.

5. Results

Three mechanical resonators with different beam widths and
numbers of beams were fabricated and tested at various
external magnetic fields (figure 15); the number of beams
was 3, 4, and 6 with 18.5, 14.6, and 13.1 μm beam widths,

respectively. The beam widths were measured by SEM. The
number of beams for the six-beam resonator was originally
designed to be 8, but two of them were broken during
the measurement (figure 15(c)). The broken beams were
completely removed by using a laser.

The devices were tested at three different external
magnetic fields: the Earth’s magnetic field (50 μT), 0.195 mT,
and 0.39 mT. The results are shown in figure 16. For the three-
beam and four-beam structures, the resonant frequency curve
is not exactly symmetric with respect to θ = 180◦. This is
because either all of the beams in the resonator did not have
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Table 4. Comparison of the normalized sensitivity (mHz (Hz degree)−1). The resonant frequency is taken from the curve of the Earth’s
magnetic field (50 μT) measurement at θ = 0◦.

Normalized sensitivity (mHz (Hz degree)−1)
and (sensing resolution averaged over θ =

0◦–90◦ (Hz/degree))

Nb wb (μm) Calculated kl (10−4 N m) Resonant frequency (Hz) at θ = 0◦ Earth’s field 0.195 mT 0.39 mT

3 18.5 4.07 1881 0.009 (0.016) 0.017 (0.032) 0.036 (0.068)
4 14.6 1.80 1248.25 0.086 (0.107) 0.192 (0.239) 0.431 (0.538)
6 13.1 2.36 1437.45 0.196 (0.282) 0.509 (0.732) 0.876 (1.26)

fC
Resonator

fC

Excitation coil Detection coil

Schmitt trigger Phase shifter Amplifier

Frequency counter

fC
Resonator

fC

Excitation coil Detection coil

Schmitt trigger Phase shifter Amplifier

Frequency counter

Figure 14. Complete magnetic sensing system. The fabricated
mechanical resonator is embedded within a positive feedback loop
that tracks the changes in the resonant frequency. The resonator is
electromagnetically excited and detected by coils.

the identical width or the permanent magnet was not placed
in exactly the center of the resonator disk, or both. Table 4
summarizes the measurement results. A sensing resolution
averaged over θ = 0◦–90◦ in terms of the resonant frequency
change per unit rotational degree is provided in parentheses
in sensitivity columns in table 4. The changes in the resonant
frequency, dfc/dθ , are not uniform throughout the rotational

(a) (b) (c)

Figure 15. Micromachined silicon resonators. (a) Three-beam structure with 18.5 μm in beam width, (b) four-beam structure with 14.6 μm
in beam width, and (c) six-beam structure with 13.1 μm in beam width.

angle (from θ = 0◦ to θ = 360◦), i.e. minimal change at θ =
0◦, 90◦, 180◦, and 270◦ and maximal change at θ = 45◦, 135◦,
225◦, and 315◦.

kl is calculated using (8) and is given by kl = (2πfc)
2I −

T0 at θ = 0◦. A mass moment of inertia (I) was obtained
by FEM simulation; I = 2.92 × 10−12, 2.93 × 10−12, and
2.90 × 10−12 kg m2 for the three-beam, four-beam, and six-
beam structures, respectively. Since the resonant frequencies
in table 4 are obtained from the curves of the Earth’s magnetic
field measurement at θ = 0◦ shown in figure 16, T0 at 50 μT,
7.6 × 10−8 N m, is used to calculate kl. The torsional
linear stiffnesses of the four-beam and six-beam resonators
are 44% and 58% of that of the three-beam resonator,
respectively. This lower linear stiffness results in better
sensing performance for the resonators with four beams and
six beams than the resonator with three beams at all magnetic
fields.

For the resonator with six beams, a sensitivity of
0.282 Hz/degree is obtained for the Earth’s magnetic field,
and 0.732 and 1.260 Hz/degree are achieved for the applied
fields of 0.195 and 0.39 mT, respectively (table 4). Although
the resonator with six beams has higher linear stiffness
than the resonator with four beams, it shows higher sensing
performances at all measured external magnetic fields and this
improvement can be attributed to the higher nonlinearity in the
six-beam resonator due to its narrow beam width compared to
the four-beam resonator. As configured, the single resonator
response is symmetric in θ ; therefore, compass orientations
with opposite directions cannot be directly resolved. This
limitation can be overcome by various means, including the
use of multiple resonators on a single chip.
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Figure 16. Resonant frequency measurement as a function of the
rotational angle, θ : (a) three beams with wb = 18.5 μm, (b) four
beams with wb = 14.6 μm, and (c) six beam with wb = 13.1 μm.
The devices were tested at the Earth’s magnetic field, 0.195 and
0.39 mT.

6. Conclusion

It has been demonstrated that nonlinear effects in resonating
structures can be used to increase the sensitivity of sensors
based on these structures. These effects are illustrated with
a model that consists of a disk-type resonator supported by
multiple beams. The effects of nonlinearity on sensitivity have
been characterized as a function of beam width and the number
of beams using an analytical model. By increasing the number
of beams while reducing beam width (and thereby maintaining
constant nominal linear resonant frequency), large nonlinearity
has been obtained, resulting in increased sensitivity. In order to
demonstrate these effects, torsional resonant magnetic sensors
have been designed, fabricated, and characterized to measure
the direction of the Earth’s magnetic field. The micromachined
resonators have three, four, and six beams with beam widths
of 18.5, 14.6, and 13.1 μm, respectively. The torsional linear
stiffnesses of the four-beam and six-beam resonators were

44% and 58% of that of the three-beam resonator, thereby
exhibiting higher sensing performance than the three-beam
resonator. Although the linear stiffness coefficient of the six-
beam resonator was larger than that of the four-beam resonator,
the six-beam resonator showed higher normalized sensitivities
at all of the measured external magnetic fields due to the
large nonlinear stiffness, demonstrating the beneficial effects
of nonlinear maximization.

A total system power consumption of less than 140 μW
including a resonator actuation voltage of 1.4 mVrms has
been demonstrated with a sensitivity of 0.28 Hz/degree to
the Earth’s magnetic field. It can be operated continuously
for more than 3000 h with a standard button cell (CR2025;
3 V, 140 mAh). Such a low power consumption level enables
continuous magnetic field sensing for portable electronics and
potentially wristwatch-type personal navigation applications.
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