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ABSTRACT 
This paper reports a template-based technique for the 

fabrication of polymer micro/nanofiber composites, 
exercising control over the fiber dimensions and 
alignment. Unlike conventional spinning-based methods of 
fiber production, the presented approach is based on 
micro-transfer molding. It is a parallel processing 
technique capable of producing fibers with control over 
both in-plane and out-of-plane geometries, in addition to 
packing density and layout of the fibers. Collagen has been 
used as a test polymer to demonstrate the concept. Hollow 
and solid collagen fibers with various spatial layouts have 
been fabricated. Produced fibers have widths ranging from 
2 µm to 50 µm, and fiber thicknesses ranging from 300 nm 
to 3 µm. Also, three-dimensionality of the process has 
been demonstrated by producing in-plane serpentine fibers 
with designed arc lengths, out-of-plane wavy fibers, fibers 
with focalized particle encapsulation, and porous fibers 
with desired periodicity and pore sizes.  
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INTRODUCTION 

Over the past few decades, substantial research has 
been directed towards the fabrication of polymer 
micro/nanofiber reinforced composites for a variety of 
applications including clothing, aerospace engineering, 
and biological applications. One of the prime features 
offered by a fiber composite is its enhanced mechanical 
characteristics as compared to the constituent matrix 
material or the fibers. The mechanical properties of fiber 
composites are governed not only by the fiber properties 
and dimensions, but also by the fiber distribution and 
volume fraction in the matrix. Randomly aligned fibers 
pose a difficulty in packing large proportions of fibers 
tightly, also making it harder to predict the mechanical 
behavior of the composite. A controlled and orderly fiber 
arrangement enables tunability of the mechanical 
properties of the resultant composite material. In addition 
to good fiber alignment, certain applications require 
control over the shape and spatial layout of the fibers.     
Although considerable advancements have been made in 
the currently existing methods of polymer micro/nanofiber 
production, such as electrospinning [1], wet-spinning [2], 

and drawing [3], it is challenging to obtain precise control 
over the dimensions, alignment and layout of the fibers 
produced in these fashions within a composite. 

The presented method exploits molding techniques to 
fabricate parallel fibers with desired placement, sizes and 
shapes. Conventional MEMS fabrication processes are 
utilized to sculpt and demold the fibers. Also, this process 
obviates handling of large numbers of fibers for building 
composites as it involves a simple transfer of the 
fabricated fibers to the matrix material without disturbing 
the arrangement.  

 
FABRICATION METHOD 

The reported fabrication method is based on 
microtransfer molding [4], a process used for building 
free-standing three-dimensional polymer negative replicas 
of a template. Figure 1 shows a schematic of the 
fabrication process sequence. Trenches with the required 
fiber layout design are etched into a silicon wafer using 
inductively coupled plasma (ICP) etching. This step is 
optionally followed by a potassium hydroxide (KOH) 
etching process to sharpen the tips of the trenches. This 
helps reduce polymer webbing due to surface tension 
effects, and facilitates the fiber individualization and 
demolding of fibers. The template is then coated with a 
thin layer of parylene to aid in fiber release (Figure 1a). A 
desired volume and concentration of collagen solution is 
poured on the template and degassed in vacuum.  

 
 
 
 
 
 
 
 
 
  
 
 
 
 

Figure 1. Fabrication process sequence, a) Deposit parylene on 
the silicon template, b) Solvent cast collagen solution, c) Spray 
coat PVP protectant, d) Individualize fibers by dry mechanical 
grinding or RIE, e) and f) Extract fibers using a water soluble 
tape after dissolving away PVP. 
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This is followed by solvent casting to for
collagen film on the template (Figures
Polyvinylpyrrolidone (PVP), a water solu
spray coated on the template. The polym
trenches, selectively masking the collage
troughs. It acts as a protectant for the fibe
individualization (Figure 1c). The portion 
the upper part of the trenches is rem
mechanical polishing or reactive ion 
forming individualized collagen micro/nan
trenches (Figure 1d). The fibers are extri
trenches using a water-soluble tape with th
retained (Figures 1e, 1f and 2c).  
 

 
Figure 2. SEM images of,  a) and b) cross 
solvent cast collagen film on a silicon tem
sharpened trenches, c) 25 μm wide indivi
collagen fibers extracted from the templa
alignment of the  fibers is retained, d) 25 μm
fibers separated from the template by direct peel
 
HOLLOW AND SOLID FIBER DIME

The wall thickness of the fibers de
concentration, and volume of the collagen
for a given surface area. The solvent cast
can be roughly estimated by equation (1). 

 

Td = Tw × M = 
V
S

 × 
C
ρ

 

 
Where, 
Td = Thickness of dry cast film 
Tw = Thickness of wet film 
M = % of solid collagen in the solution 
V = Volume of collagen solution used 
S = Effective surface area of the tem

solvent casting 
C = Concentration of collagen solution u
ρ = Density of collagen 
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Figure 3 illustrates the va
thickness with the concentration
solution. The measured values fo
estimated values. The noted diff
be attributed to losses resulti
polymer solution to the bottom 
effective surface area.  

 

Figure 3. Variation of fiber wa
solution concentration for a fixed v
the collagen solution for a concentr

 
By regulating the dimension

template, and the collagen soluti
or solid fibers are obtained. Fig
rectangular cross-section hollow
20 μm deep template with 3 ml o
collagen, and a ribbon-like solid
μm deep template with 5 ml o
collagen, respectively. 

The width and length of the f
template design. This method h
fibers with widths spanning f
(Figure 4c) to 50 µm (length- 4
varying from 300 nm to 3 µm.  
 

 
Figure 4.  SEM images of, a) a 
ribbon like solid collagen fiber, an
tape. 
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SPATIALLY DESIGNED FIBER CO
For applications demanding three-dime

over the manipulation of the fibers, appr
template designs with the desired str
horizontal and vertical planes of the mo
obtain the required spatial fiber layouts.  
 
In-plane and out-of-plane crimped fibers 

A certain amount of slack in the load
held in a matrix material can improve the e
resultant composite material. Many soft 
human body, such as tendons and ligament
of crimped fiber bundles for this reason [5]
and out-of-plane wavy fibers can be fabric
template-based method. For in-plane un
templates with serpentine trenches are used 
arc lengths of the serpentine patterns ar
fabricate in-plane wavy fibers with designed
ranging from 11 % to 57 %. The templates f
wavy fibers are fabricated to have a multi-
necessary for delineating the out-of-plane
the resultant fibers (Figure 6a). Sequenti
KOH etching steps are used to fabricate th
For this process, solvent casting of collag
replaced by spray coating over the templa
undulated fibers, preseparated from 
transferred directly to a water soluble tape (F

 
 

 
 
Figure 5.  SEM images of, a) a serpentine silic
b) in-plane serpentine collagen fibers with a de
57%. 
 

 
 

 
Figure 6.  SEM images of, a) a multi-depth sili
the fabrication of out-of-plane wavy fibers, and
wavy collagen fibers.  
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Often applications demand en

as drug loaded particles [6] and
Silicon templates used in the te
be tailored to fabricate fiber
encapsulation. These templates
placed in the trenches to capture
The well diameter is designed t
particle size. This concept is 
beads (diameters: 10-30 µm) as
film is cast over the template. Af
the glass beads are driven into t
pattern guided self-assembly (F
of collagen is cast on the tem
hollow fibers with glass beads en
wells (Figure 7c).  

 
 
 
 

Figure 7.  SEM images of, a) 
fabrication of fibers for particle e
placed in periodic wells along holl
trenches of the template, and c
collagen fibers extricated using tape
 
Porous fibers 

Using templates with pillar
fibers are fabricated (Figure 
placement can be designed as re
networks can find applicability i
chemical sensing. 
 

 
 

Figure 8.  SEM images of, a) a sil
the trenches, and b) porous collagen
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Fabrication of composite material  
For the fabrication of fiber reinforced c

matrix material is cast on the water solub
the produced fibers. The tape is dissolved
behind fibers embedded in the matrix. 
composite with collagen fibers in biologica
(elastin) has been demonstrated. Such a sc
use in tissue engineering applications. Fig
unidirectional aligned collagen microfib
lamina. 
 

 
Figure 9.  Microscope image of an aligned colla
composite in elastin matrix. 
 
MECHANICAL CHARACTERIZAT

Stress-strain relationship of the fiber 
derived by applying a constant strain rate 
until failure. Preliminary mechanical tests s
material exhibits the expected trend of stiffe
fiber direction as compared to the direction
to it (Figure 10). Young’s modulus of th
materials along the fiber direction is observ
times the modulus in the perpendicu
demonstrating their orthotropic nature (T
tests have been conducted on fiber co
approximately 1% fiber volume fraction. N
of the elastin film have not been taken into
making these measurements.  

 

 
Figure 10.  Stress-strain relationship of 
composite illustrating material stiffening a
direction as compared to across the fiber directi
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Table 1. Young’s moduli of collage
along the fiber direction and 
calculated between 4-6 % strains. 
 

Direction of the 
applied load 

Yo
Sample-1

Along the fiber 
orientation 

1500 

Perpendicular to the 
fiber orientation 

500 

 
CONCLUSION 

Fabrication of polymer mi
using a microtransfer-molding
been established. The fabrication
a well defined spatial layout o
control over their dimensio
composite material has been d
application as a tissue scaffold
extended to other polymers an
scaled down to form nano-width
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