
Table 1. Process parameters and their ranges 

Step Parameters Abbrev. Ranges Units 
Exposure Energy ENERGY 440-580-720 mJ/cm2 

Temp. PEB TMP 60-70-80 °C PEB 
Time PEB TIME 20-30-40 min. 

(Note: Parameters in bold are three parameters corresponding 
to 33 factorial design in this study.) 
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Abstract 
In this paper, negative SU-8 photoresist processed at low-
temperature has been characterized in terms of 
delamination. Based on a 33 factorial designed experiment, 
27 samples are fabricated and the degree of delamination 
is measured. In addition, nine samples are fabricated for 
the purpose of verification. Employing a neural network 
modeling technique, a process model is established, and 
response surfaces are generated to investigate the degree 
of delamination associated with three process parameters: 
post exposure bake (PEB) temperature, PEB time, and 
exposure energy. From the response surfaces generated, 
two significant parameters associated with delamination 
are identified, and their effects on delamination are 
analyzed. The higher the post exposure bake (PEB) 
temperature at a fixed PEB time, the more delamination 
occurred. In addition, the higher the dose of exposure 
energy, the lower the temperature at which the 
delamination begins and the larger the degree of 
delamination. The results identify acceptable ranges of the 
three process variables to avoid the delamination of SU-8 
film, which in turn might lead to potential defects in MEMS 
device fabrication. 
 
INTRODUCTION 
Among numerous polymers being used in the development 
and fabrication of MEMS devices, the popularity of SU-8 
has increased because of its mechanical stability, 
biocompatibility, and suitability for fabricating high aspect 
ratio features [1]-[3]. SU-8 is a negative near–UV 
photoresist designed to produce uniform thick films in a 
single spin-coating step. Vertical sidewalls and high aspect 
ratio features result from the product of photochemical and 
thermal cationic processes. The exposed and subsequently 
cross-linked portions of the film are rendered insoluble to 
liquid developers. SU-8 has low optical absorption, thus 
allowing the patterning of very thick films.  

However, standard recipes suggested for SU-8 
processing have proven in practice to be very sensitive to 
process conditions, and the parameter values described in 
the literature have varied over a wide range [3][4]. For 

these reasons, previous efforts at characterization and 
optimization of SU-8 process have employed statistical 
designed experiment and Taguchi method [5][6], and the 
results suggested optimal processing parameters for various 
thicknesses of SU-8 film to acquire better resolution of the 
patterned image. 

Despite the advantages of SU-8, previous studies 
reported delamination of the SU-8 microstructures and 
films. The failure of microposts in [1] was reported mainly 
due to the interfacial fracture at the base, as no failure 
occurred in the micropost bodies. Mechanical delamination 
of SU-8 was also observed in MEMS drug delivery devices 
[2].  Brunet et al. also reported the delamination of SU-8 
microstructures during developing in the development of 
high aspect ratio magnetic coils. Thick layers of SU-8 
experience more stress, and the structures tended to 
delaminate more quickly than the thin layers [3]. 

For multi-layer MEMS fabrication, which is currently 
under investigation at the Georgia Institute of Technology, 
delamination associated with stress has led to concerns 
about defects in SU-8 fabricated microstructures. In an 
effort to reduce the amount of stress on SU-8 
microstructures, a low-temperature process with prolonged 
bake time was investigated. By trial and error, delamination 
was reduced. However, it is necessary to perform a more 
systematic characterization experiment to clarify the 
relationship between process parameters and identify 
suitable ranges for process variables to ensure fabrication 
without delamination. Therefore, this paper investigates the 
variation of low-temperature SU-8 processing with the 
ultimate goal of minimizing delamination, using response 
surfaces generated from neural network models. 

The paper is organized as follows: Section 2 describes 



 
Figure 2. An example picture of bar patterns used 
for the measurements of the degree of delamination 
(DoD).  

how the experiment was performed for 100µm thick films 
of SU-8. Section 3 provides background information of 
neural network modeling. Results will be provided in 
Section 4, followed by a summary and discussion of future 
work in the final section.    

 
EXPERIMENT  
Statistical designed experiment 

If a process has more than a very small number of 
steps whose possible values have a large range, the number 
of experiments needed for process characterization can be 
prohibitively large. In addition, the role of each step in 
determining the final outcome is generally not clear. The 
traditional method of collecting large quantities of data by 
holding each factor constant in turn until all possibilities 
have been tested is an approach that quickly becomes 
impossible as the number of factors increases. Statistical 
experimental design is a systematic and efficient alternative 
methodology for characterization and modeling using a 
relatively small number of experiments [7].  

In this study, five parameters at three levels each were 
initially considered. The parameters were soft baking 
temperature/time, exposure energy, and post exposure 
baking (PEB) temperature/time. Since cross-linking takes 
place after exposure, the variables in the soft baking step 
were later omitted. Instead, the soft baking step was 
performed in a consistent manner for all samples. Develop 
time after PEB plays an important role in adhesion to the 
surface. Extended developing time may increase the chance 
of delamination of the exposed area from the substrate, but 
insufficient time may negatively affect on the lithographic 
resolution [8]. In this research, the developing time that 
allowed decent lithographic resolution was consistently 
applied in order to avoid any additional complexity in 
characterization. The process variables and their ranges 

appear in Table 1. A 33 factorial design requiring 27 
experiments was conducted, and this design was further 
augmented with nine randomly selected experiments for 
model verification purposes.  

Sample fabrication and measurement 
SU-8 was spin coated on 4” silicon wafers to a thickness of 
100 um, and the samples were soft baked at 70°C on a hot 
plate to drive off solvents. Based on the designed 
experiment, all possible orthogonal combinations of the 
three parameters were applied. All samples were developed 
for a fixed time, and the amount of delamination was 
measured. The degree of delamination (DoD) was 
quantified by the following expression: 
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where L is the length of the original bar pattern, and l is the 
length of bar pattern that remained on substrate (see Figure 
1). To minimize the measurement error, l was averaged 
over eight bar patterns in one location as shown in Figure 2.  
 
NEURAL NETWORKS 
Neural networks have become useful tools in process 
modeling and demonstrated the capability of learning 
complex relationships between groups of related 
parameters [9]. A neural network is a structured 
interconnection of computational nodes called neurons that 
contribute to parallel computation in a manner similar to 
the human brain. The interconnection of neurons 
establishes knowledge that is acquired by the network 
through a learning process, and that knowledge is stored in 
the form of inter-neuron connection strengths known as 
weights.  Each neuron contains the weighted sum of its 
inputs filtered by a sigmoidal “squashing”  function, 
providing neural networks with the ability to generalize 
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Figure 1. Microscopic pictures of delaminated 
structure that show different degrees of 
delamination: taken with Olympus Vanox 
microscope.  
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Figure 3. An illustration of a multilayer perceptron 

neural network. 

 
Figure 4. Performance evaluation of neural process 
model. Straight line represents 100% accuracy. 

with an added degree of freedom that is not available in 
statistical regression techniques [10].   

The learning algorithm used in this study is the error 
back-propagation (BP) algorithm. A typical back-
propagation neural network structure is depicted in Figure 
3. In the BP learning algorithm, a single iteration consists 
of two parts: a forward and a backward propagation. In the 
forward propagation, the outputs from the ith layer are 
weighted and summed, and the weighted sum is filtered 
through a sigmoid function. The outputs of neurons in jth 
layer become inputs to the neurons in the next layer k. The 
forward propagation is explained by the following 
equations: 
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where sj are weighted sum input to neurons in layer  j, oi is 
output from neurons in layer i, ni is the number of neurons 
in ith and wji is the weights connecting. In the same manner, 
yk, sk, oi, and si also can be derived. In backward 
propagation, weights are updated in the direction that 
minimizes an error function defined by:  

2)ˆ(
2

1
kkk yyE −=                           (4)  

where  
�

k is a target, and yk is the actual output value of the 
last layer k. The generalized delta-rule based on gradient 
descent approach is applied to minimize the error function. 
The weights are initially randomized, and forward 
propagation is performed. Once the outputs of the last layer 
are calculated, weights are updated by the delta for each 
node calculated from the output layer (layer k) and back-
propagated to the input layer (layer i). The generalized 
delta rule is:   
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where n is the number of iteration, �  is the learning rate 
and �  is the momentum. The learning rate (� ) is a constant 
that represents the rate at which a weight will be changed 
along its slope to the minimum error. The momentum (� ) is 
a constant that includes a portion of the previous weight 
change to the current weights.  

Utilizing ObOrNNs [11], a custom neural network 
simulation package developed by the Intelligent 
Semiconductor Manufacturing Group at Georgia Tech, 
neural network based response surface models of the SU-8 
fabrication process were derived. Initially, neural networks 
were trained with the data generated from the 33 factorial 
designed experiments, and these models were verified with 
the data set that was not previously introduced to the 
networks during training. Inputs to the networks are three 
parameters of interest (exposure energy, post-bake 
temperature, and post-bake time), and output of the 
networks is degree of delamination. “Hidden”  neurons 

 
Figure 5. Response surface plot: fixed exposure 

energy at 440 mJ/cm2. 



(neurons in the middle layers) extract nonlinear features 
from the data, and several networks with different numbers 
of hidden neurons were constructed and tested. The average 
RMS error in training was 2.57%, and that in testing was 
4.87%. Model performance is depicted graphically in 
Figure 4. 

 
RESULT AND DISCUSSION 
Once the neural process model was established, response 
surfaces were generated to illustrate the relationships 
between any two process parameters and degree 
delamination. Any two selected variables of three were 
simultaneously varied within their ranges in Table 1, while 
the remaining parameter was set to at its mid-range level. 
The predictions of the neural process model were then 
graphed using 3-D contour plots (see Figures 5-8).  

Figure 5 illustrates the effect of PEB time and 
temperature on the degree of delamination when the 
exposure energy is fixed at 440 mJ/cm2. The energies are 
setup at 580 mJ/cm2 and 720 mJ/cm2 in Figures 6 and 7 
respectively. In this experiment, PEB temperature appeared 
to be the most critical factor affecting delamination under 
the condition that the dose of energy is fixed. To ensure the 
cross-linking of SU-8 after exposure, sufficient PEB time is 

required at the proper temperature. It is observed, however, 
that the higher the temperature, the larger the degree of 
delamination. In addition, PEB time also somewhat affects 
the degree of delamination at a given temperature. The 
shorter the PEB time, the less cross-linking, increasing the 
degree of delamination. The high degree of delamination at 
temperatures above 70-75°C is primarily due to the 
coefficient of thermal expansion (CTE) mismatch between 
SU-8 and the silicon wafer with native oxidation. 

As the exposure energy increases, the degree of 
delamination increases, while the temperature at which the 
delamination starts to occur decreases. Higher exposure 
energy tends to increase cross-linking of the polymer in the 
exposed area, and consequently, this increases film stress 
due to volume changes. The effect of exposure energy on 
delamination can be observed clearly in Figure 8. By 
setting the temperature at a certain level, the degree of 
delamination caused by CTE mismatch can be neglected. 
At a fixed PEB temperature of 70°C and a reasonable PEB 
time of 25-40 minutes, the degree of delamination increases 
with exposure energy. Region 1, where the PEB time is less 
than 30 minutes and the exposure energy is less than 520 
mJ/cm2, showed some degree of delamination due to 
incomplete cross-linking. The Region 2, where the PEB 
time is longer than 25 minutes and the exposure energy is 
larger than 650 mJ/cm2, shows approximately 5% 
delamination due to the stress induced from volume 
changes. 
 
CONCLUSION    

To summarize, two significant parameters associated 
with SU-8 delamination were investigated, and their effects 
on delamination were determined from the response 
surfaces generated from neural network models. Higher 
PEB temperatures at a fixed PEB time result in more 
delamination due to CTE mismatch. In addition, a greater 
dose of exposure energy lowers the temperature at which 
delamination starts to occur and increases the degree of 
delamination. The response surfaces generated also identify 
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Figure 8. Response surface plot: fixed post exposure 

baking temperature at 70°°°°C. 

 
Figure 7. Response surface plot: fixed exposure 

energy at 720 mJ/cm2. 
 

 
Figure 6. Response surface plot: fixed exposure 

energy at 580 mJ/cm2. 



suitable ranges of process conditions that avoid SU-8 
delamination, which can ultimately cause defects in MEMS 
devices. 
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