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This paper reports & model for the relationship between critical debonding pressures
und the work of adhesion of thin films in the blister test. Previcus models have
peglected the possible role of residual stresses in the film on the critical pressure. The
model reported here shows that these stresses may have a large effect on the relation
hetsween the critical pressure and the work of adhesion. A similar model is developed
for an alternative blister geometry, the anoular or “istand” blister. It is shawn that
films which cannot be peeled using the standard hlister et (due to exceeding the
tengile strength limit of the film before initiating 4 debond) can be peeled by varying
the geometric parameters of the island blister,

KEYT WORDS Adhcsion; blister geometry; eritical debonding pressure work  of
adhesion relationship; istand blister; pecling; residual stresses.

INTRODUCTION

The blister test for adhesion measurement was first reported in 1961
by Dannenberg.' More recently, the test has been used Lo measure
the adhesion of polymer films™ and adhesive tapes.” Much of this
work involves using fracture mechanics to relatc the “eritical
pressure” (the pressure at which debond initiates) to the work of
adhesion of the film or tape. However, the role of residual stresses
in the films has often been neglected. Further, the blister test often
fails for well-adhered thin films because the tensile strength of the
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film s éxcecded before mog! i 1 B PR TOpats, fipg
maodel of the blister 1est using fracture mechanies WhCh illustrgg,,
the effects of these residual stresg.. and. second, an analysis o
alternative blister geometries which allow the peeling of film an

lower pressures than in the standard blister geometry.

FRACTURE MECHANICS METHOD

The concept of using fracture mechanics in adhesive fajlure Studies
was proposed by Williams.” In ordinary fracture mechanics, h,
effects of plastic deformation are important, since, except for ideg)|

brittle materials, all materials undergo some yielding before frac.
ture. However, in applying fracture mechanics 10 problems involy.
ing adhesive failure, it is assumed that adhesive failure occurs 5
stresses much lower than those Necessary to cause large-scale plaste
vielding. Under these restrictions, linear elastjc fracture mechanics
may be applied.

Consider a pressurized blister of flm adhered to a substrate g
shown in Figure 1. Using a Griffith argument,® during any virtua]
mcrement in crack area, the total energy of the peeling system mus
be constant. Differentially, this can be expressed as:

SE =511+ 65 = (1)

where IT 15 the potential energy of deformation of the blister and §
is the energy of forming new surface. Rearrangement of Eqg. (1)
vields:

8 = —y,54 (2)

where y, i$ defined as the work of adhesion and 64 is an increment

Praszure {p)

FIGURE | Drefinition of blister parameters
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of crack area. Thus. if expressions for the potential energy of
deformation of the blister canbe obtained, the work of adhesion

can be found by applying the peel criterion

2.
The potential energy of the blister is related to both the
blister load-deflection behavior (how the blister deformsin
response to an applied load) and the blister geometry.
Therefore, in order to apply Eg. (2), we have assumed various
blister geometries and calculated the load-deflection behavior
of each. The standard blister geometries of interest in our
work are a square of side length 2a and acircle of radius a.
The films to be blistered can be treated as membranes (no
resistance to bending) or as plates, and are characterized by a
Y oung's modulus E, aPoisson'sratio v, and an in-plane
residual stress ao. Many authors have taken up the subject of
the load-deflection behavior of such plates and membranes. 71
We have applied the energy minimization methods of
Timoshenk08 and Way ,9 but have modified them to include
the possible contribution of residual stresses to the film
behavior.

Using these methods, it is readily shownl1 that the load-
deflection behavior of all three cases (square membrane,
circular membrane, clamped circular plate) can be described
by the equation:

p=kd + (k2 + ksz)d (3)
where p isthe applied (uniform) pressure, d isthe deflection

of the

blister at its geometric center, and k1, k2, and k3 are functions
of the geometry of the test site and of the type of film (plate or
membrane). Equation (3) is the genera load-deflection
relation which will be used in the analysis of the blister
potential energy.

The values of the constants in Eq. (3) for the three cases
examined here are given in Table |, assuming a Poisson's ratio
of 0.25. Most of the constants are not very senditive to
Poisson's ratio; for example, the value of k1 for the square
membrane changes from 1.83 to 2.05 when v changes from
0.25 to 0.35. The full dependence of the constants on
Poisson's ratio is given in the Appendix.

Consider the flawed elastic body shown in Figure 2, where P
is some generalized load-point force acting on the body and ?
is the corresponding work-conjugate displacement through
which the body moves® The potential energy of deformation
can be related to these generalized loads and displacements by:

?=V-P?= - v for dead loading (prescribed P) (4a)
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Clamped
Square circular Circular
membrane® plate® membrane®
k¢ 1.83Et/a* 2.77Et/a* 3.56Et/a*
k, 0 64D /q*¢ 0
ks wt0,4/64a> di04/a 4toy/a?
cy 0.429E; 2.42Er 0.917E¢
(2 0 192D /n 0
c3 Atoy/512 12toy /7 8toy/
A 16a°d/»? a*dn/3 a*drx /2
da/dA 1/2a¢ 1/27a 1/27ma

“k  values taken from Timoshenko analysis  of
plate/membrane under zero residual stress,® extended to
account for residual stress.

®k values taken from Beams. ™0

© Assumes a value of Poisson’s ratio of 0.25.

‘D =plate  fiexural rigidity = E£/12(1 - v?), 4 =
Poisson’s ratio.

¢ Assumes incrementally Symmetric peel.

or

IO=v for fixed-grip loading (prescribed A) _
(4b)

where V and V* are the strain energy and complimentary strajp
energy of the body, respectively. Substitution of these relations into
Eq. (2) yields:

av*l da
=|=—| = (fixed load
=G g5 e &
P.A

FIGURE 2 A cracked and loaded structure,
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dv7 da
Vo= {—dzLﬁ (fixed grips) (5b)
where a is the crack length (in this case, the blister size) and A is
ihe crack area. It can be shown® that expressions (5a) and (5b) are
,nathematically equivalent to first order.

For the case of lateral load uniformly distributed over a thin plate
or membrane (ratio of film thickness ¢ to blister size a <<1), the
work-conjugate force and displacement are related to the actual
lcad and deflection by:

P=p

6

A :J w(r)d*r ©)
A

where p is the blister pressure, w(r) is the blister deflection at
position r due to that pressure (note that d as defined in Eq. (3) is
the same as w(0)), and A is the blister area. Equation (3) can now
pe written in terms of the generalized work-conjugate force and
displacement:

P =B,A+ BA (7)

where B, and B, are functions of geometry, but not of P or A. The
strain energy is then given by:

VzLAP(A)dAJrV, (8)

where V. is the strain energy due to the residual stresses and strains.
For the case of the blister under residual tensile stress, increasing
crack size (a) does not change V,. This is because as long as the
edges of the film are attached to the substrate, relaxation of the
residual stress cannot occur. Therefore, although the residual stress
and strain affect the peel criterion through the load-deflection
behavior, the energy balance need consider only the elastic strain
energy stored in the blister. Note that this assumption is not valid
for films under compressive stress, which may undergo stress
relaxation by buckling once they have debonded from their
substrates.'? The assumption is also invalid if the blister substrate is
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that of Williams:®

10

—_ Loy T S EANY
= U.oppde (;\;}

where d. is the deflection at the center of the plate at pressure pe.

Alternatively, for the case of a circular membrane undergoing large

deflections with zero residual stress, (¢, =c; =0) Eq. (9) becomes:
¥

v, =0.625p.d, (11)

Gent* has also analyzed this case and has obtained a value or 0.65
for the premultiplying factor in Eq. (11), due to the assumption of
slightly different load-deflection behavior.

In order to illustrate the effect of the residual stress, we will
consider a circular membrane undergoing large deflections which is
under varying degrees of residual stresses. In this case, substitution
of the appropriate parameters from Table I into Eq. (3) yields:

Et , 4o
p.=3.565dl+ ;’;’ d, (12)

which has been obtained by Beams'® assuming a Poisson’s ratio of
0.25. Corresponding substitution of parameters into Eq. (9) yields:

v = 2.22Et(d.[a)* + 2.00001(d./a)* (13)

The relation between y, and p. can be obtained by simultaneous
solution of Egs (12) and (13). The results of this solation are
presented in Figure 3, a logarithmic plot of the work of adhesion
{normalized by the film modulus and thickness) wversus critical
pressure (normalized by blister size, film modulus and film thick-
ness) for various residual stresses. As can be seen, for zero residual
stress, a slope of 4/3 is obtained, agreeing with the derivation of
Gent.* As the residual stress is increased the adhesive energy
corresponding to a given critical pressure decreases; this is due to
energy expended in deflecting the film against the residual stress. At
high enough stress, the slope of the critical pressure relation
becomes equal to 2. This corresponds to a linear load-deflection
relation (with the cubic term in Eq. (12) being negligible), and thus
leads to the same functional form as a blister undergoing small
deflections (where the load-deflection relation is also linear).’
Finally, at large pressures, the effect of the residual stress on the
critical pressure becomes small since the load-deflection relation is
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FIGURE 3 A log-log plot of the work of adhesion of a film (normalized by the
thickness and Young’s modulus of the film) as a function of the critical pressure of a
blister (normalized by the blister size and by the thickness and Young’s modulus of
the film), parameterized by the residual stress in the film (normalized by the Young's
modulus of the film).

dominated by stretching against the modulus (with the linear term
in Eq. (12) being negligible).

We now present a numerical example based on polyimide films
used in our work. Typical values®® of the various parameters in Egs
(12) and (13) are:

E=3GPa
gy =30MPa
t=10 ym
a=15000 um

v=0.25

Suppose the critical pressure for such a film is measured to be 10 psi

asii

o, it
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w10 Pa). Neglecting the residual stress. a standard analvsis
would yield a value for y, oif 31 Do dnocomirast, lakmeg B0
account the residual siress leads to a value of y, of 24 j{m”.
Neglecting the stress has led to an overestimation of y, of 32%. This
cnergy went into deflecting against the residual stress instead of
debonding.

Another calculation which can be performed is the tensile
qrength limit. Suppose the above film has an effective ultimate
«rain of 2%. For a spherical cap, it can be easily shown that the
maximum center deflection can be related to the ultimate strain €,

by Ref. 2:
(d/a)aax = 1.5€u (14)

Taking into account the already present intrinisc strain (and
assuming a Poisson’s ratio of 0.25), the maximum deflection which
can be sustained is 685 um, corresponding to a critical pressure of
12.7 psi (87.8 x 10° Pa) and a work of adhesion of 35J/m?. Greater
values of the work of adhesion cannot be measured using the above
geometric and film parameters, due to the tensile strength limit of
the film. This problem can be overcome by using thicker films; this
has been done for the peel test.! In the blister test, we have
additional flexibility. Different geometries are possible which can
facilitate peel of thinner films even in systems with very good
dhesion. These are examined in the following section.

{SLAND BLISTERS

Equation (9) suggests that if a geometry can be found in which
da/dA can be increased without simultaneously decreasing dV'*/da
(see Eq. {5)), larger values of y, may be measured at the same load.
For simple blisters, this derivative is inversely proportional to the
membrane size (Table I).

Decreasing the membrane size fails since the deflection A will
also decrease. However, consider an annular “island” structure of
outer radius a, and inner radius a, as shown in Figure 4. The
blistering will now occur only off the center island. The defiection A
(and therefore V*) of this blister is a function of the difference
a,~a,, which changes only slightly during peel. The derivative
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bonded
film

island radiys a .
film radius g .
B=a,la 1
FIGURE 4 Island blister structure.
da/dA, however, is inversely proportional only to a;. Thus, a large
geometric advantage can be obtained by decreasing g, (large
da/dA) while keeping a, — a, large (large A at the same P).
The critical pressure analysis of this structure proceeds as above,
The load-deflection behavior is considerably more complicateg;
however, an approximate solution can be obtained by considering
the case of residual stress dominated behavior. In this case, the

membrane equation'> can be integrated using annular boundary
conditions (zero film deflection at a; and a,) to yield:

2 2
D o« r
EhGE]
w(r) 4aot[ a; 4 n a, (13)
where p is the (uniform) pressure on the annular film and o?is 5
“logarithmic square mean” defined by:

2 a% - a%

In(a,/a;)

Integrating Eq. (15) over the area of the deflected annulus yields
the volume A. Since the load-deflection relation is assumed 1o be

linear (stress-dominated), the strain energy and complimentary
strain energy are equal and are given by:

(16)

V=V*=0.5PA )
Applying Eq. (5a) yields the critical pressure relationship:
2.2 2 2
Pcar ﬁ -1 J
= =57 18
e 32001 In B (18)

i

sttt e | i

ot

i
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» i defined as the annular ratio a/a,. Although approxi-
e itin wive w examine the lmiing behavior of £q. (18). As
ﬁ;bproaches unity, v, approaches zero (sipce no film is exp@sed, no
,dhesion can be measured even at infinite pressure), while as ,8
approaches infinity, v, becomes large for any pressure p.. Thus, it is
(eoretically possible to measure large y, values at pressures which
Jo not exceed the ultimate tensile stress of the film by making the
center island sufficiently small.

For example, consider the same film as above, this time adhered
10 a substrate with a value of v, of 100J/m?. Also assume that the
maximum pressure we wish to subject the film to is 10psi
(69 X 10% Pa). From Eq. (18), the value of a; necessary to achieve
peel of this system is 850 um, or an island diameter of 1.7 mm.
Using an island blister, the tensile strength limit of the above film
can be overcome geometrically. Experimental confirmation of the
utility of the island structure is being reported separately.

CONCLUSIONS

It has been demonstrated for the classical blister test that the effect
of the residual stress in the film may drastically affect the critical
pressure-work of adhesion relationship used to analyze adhesion
data. In addition, a blister structure for overcoming the tensile
strength limit of peeling thin films, the annular or “island”
structure, has been proposed. The cirtical pressure—work of
adhesion relationship has been derived for this structure using the
methods outlined for the classical blister test. The resulting equa-
tion indicates that peel of thin films can be initiated at any
conveniently low pressure by varying the geometric factor §, the
ratio of the outer to inner radii of the film annulus.
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The explicit dependence of the various constants of the adhesjqy
model on Poisson’s ratio is given below. The constant ky (repre.
senting the residual stress component) does not have a Poisson'g
ratio dependence, while the constant k, (representing the bending
component) is related to the plate flexural rigidity, thereby havipe 1
known Poisson’s ratio dependence. Thus, only k; (and therefore ;1)
has a Poisson’s ratio dependence to be determined. The k,
dependence for each of the three cases of interest is given by th,
following equations:

Square membrane:
= 7t {i_ 4(5 - 3v)? ]Et
L128(1- )16 9779 —v) + 64(1 + v) Ja®

Clamped circular plate:

3
ky = 775 [1.221 - 7.848 X 107(6 — v)(1 + 11v)

Er
—8.965 X 107(23 — 41v)(1.98 — v)] e

Circular membrane:

8 Er

“T3iwe

and the relationship between &, and ¢, is given by:

a10d3
Cl = kl‘—“.

A3
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