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Abstract—This paper presents the derivation and verifica-
tion of a sinusoidal-steady-state equivalent-circuit model for
microfabricated inductors developed for use in integrated power
electronics. These inductors have a low profile, a toroidal air
core, and a single-layer winding fabricated via high-aspect-ratio
molding and electroplating. Such inductors inevitably have a
significant gap between winding turns. This makes the equivalent
resistance more difficult to model. The low profile increases the
significance of energy stored in the winding which, together
with the winding gap, makes the equivalent inductance more
difficult to model as well. The models presented here account
for these effects. Finally, the models are verified against results
from 2D FEA, 3D FEA, direct measurement, and in-circuit
experimentation. In all cases, the equivalent-circuit model is
observed to be accurate to within several percent.

I. INTRODUCTION

Passives, namely inductors, transformers and capacitors, are
often the largest and most expensive components in power
electronic circuits. Further, the magnetics (inductors and trans-
formers) are often responsible for a large portion of the power
loss. As operating frequencies are increased, the physical size
of the passives can, in theory, be reduced while maintaining
or improving efficiency [1]. Realizing this reduction in size
and simultaneous improvement in efficiency requires improve-
ments in magnetics technology.

As the switching frequencies of the power electronics rise
and the size of the magnetics falls, new fabrication strategies
for the magnetics, such as MEMS microfabrication, become
possible. On-chip inductors built for power converters in
the multi-megahertz range using MEMS-like microfabrication
include [2]–[12] and are reviewed in [13]. With sufficiently
small volume, the magnetics can be embedded in the substrate
of the power circuit or within a secondary substrate and flip-
bonded above the power circuit. If the inductor is embedded
in the power-circuit substrate, the dead space of the substrate
is then used for magnetics, eliminating the high profile of the
magnetics and greatly reducing the volume of the system.

Air-core magnetics offer the advantages of avoiding mag-
netic core losses and avoiding fabrication processes that in-
corporate special materials [1], [14], [15]. While planar spiral
and solenoidal air-core inductors produce significant external
fields which may cause electromagnetic interference problems
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and losses in nearby conductors, toroidal inductors need not.
Microfabricated toroidal inductors have been fabricated above
substrates [16]–[19], as well as embedded in substrates. The
most common embedding is in printed circuit boards in which
toroidal magnetics are formed using copper traces and plated-
through vias [20], [21]. However, toroidal microfabricated
inductors have also been embedded in silicon and other
substrates [22], [23]. The development of embedded toroidal
air-core inductors related to this paper is presented in [24].

The focus of this paper is equivalent circuit models that
can support the analysis, optimization and design of MEMS-
microfabricated toroidal air-core inductors of the type de-
scribed in [24]. To that end, the remainder of this paper
is organized as follows. Section II presents geometric and
magnetic details of the inductors considered here. Section III
presents the models that are a main focus of this paper.
These include models for electromagnetic fields, and their
abstraction into an equivalent-circuit model. Section IV briefly
describes the MEMS fabrication of inductors that support
experimental verification of the models. Section V presents
model verification based on the results of both numerical
and physical experiments. Finally, Section VI summarizes this
paper and offers concluding remarks.

II. TOROIDAL INDUCTORS

Toroidal inductors provide a compact means for storing energy.
They are amenable to having a large number of turns, and
hence a high inductance, and they have largely self-contained
magnetic flux. The style of toroidal inductor considered here
is shown in Fig. 1(a). It is a single-layer air-core inductor
microfabricated on/in a lossless substrate that can be flip-
bonded to a power-electronic circuit.

Microfabrication of the inductors considered here relies
on high-aspect-ratio molding and electroplating to form 3D
copper windings with near-mm-tall vertical conductors [24].
The inductor shown in Fig. 1(a), for example, has 25 turns
with a 100-µm gap between turns, a 650-µm height, and inner
and outer radii of 1 mm and 3 mm, respectively. The copper
winding is approximately 30 µm thick over all surfaces.
Further fabrication details are discussed in Section IV.

As seen in Fig. 1(a), the inductor winding spirals around
the toroid in the poloidal direction as the spiral progresses in
the toroidal direction. Thus there exists a single-turn toroidal
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(a) Microfabricated and functional inductor. (b) Inductor dimensions
used during modeling.

Fig. 1. Toroidal inductor and dimensions used during its modeling.

current and a multi-turn poloidal current. At low frequencies,
these currents occupy the entire winding volume, and create
a net current that follows the winding. However, at high
frequencies these currents are forced to the winding surface
through magnetic diffusion. The poloidal current terminates
the toroidal magnetic flux that travels around the interior toroid
core, and thus flows on the inner winding surface. The toroidal
current terminates the exterior poloidal magnetic flux that
passes through the center hole of the toroid, and thus flows on
the outer winding surface. When either current meets the edge
of a winding turn, it flows down that edge and becomes the
other current on the opposite side. Because the two currents
are orthogonal, their associated energy storage and losses can
be computed independently at all frequencies. In practice, for
a toroid wound with many turns, the poloidal current density
is much larger than the toroidal current density. Since the two
currents occupy the same total volume at all frequencies the
stored magnetic energy and losses associated with the poloidal
current are generally much greater.

For modeling purpose, several dimensions are defined as
shown in Fig. 1(b). The inductor is assumed to have a toroidal
core with a square cross section. This cross section has inner
and outer radii RI and RO, respectively, and height D. The
thickness of the winding wrapped around the core is T . The
number of turns in the winding is N, and the gap between
turns is G, independent of radius.

III. MODELING

The models presented here begin with the electromagnetic
fields within the inductor and proceed to an equivalent circuit
model extracted from those fields. The equivalent circuit model
captures both stored energy and loss. For inductors of the type
shown in Fig. 1(a), it is the losses that are the more difficult to
model because they depend strongly on the details of magnetic
fields at the winding surface while these fields store only a
fraction of the energy.

The inductors considered here carry a single-layer multi-
turn winding that is thick compared to a skin depth during
typical AC operation. The added thickness is chosen based
on DC operating considerations. A simple AC model of such
a winding would consider currents flowing within one skin
depth of the winding surface. However, as seen in Fig. 2, the
currents are not uniform across the surface. Rather, the gaps
between winding turns cause the currents to concentrate at

Fig. 2. An example of finite-element simulation for toroidal windings.
Shown is one section of a periodic multi-turn structure with side-by-side turns,
simulated by the use of symmetry boundary conditions at the left and right
of this section.

the corners, and flow on the sides, of each turn [15]. With
wide gaps, greater than several skin depths, this results in a
significant increase in losses that is captured only by improved
models. One such set of models is presented here.

A. Energy Methods

The foundational models presented below are derived with
the same energy methods [25] that underlie finite-element
analysis (FEA) [26]. FEA typically segments space into many
small regions, and expresses a potential over each region by
a simple function having a few free parameters. The potential
is then used to determine the energy stored in each region,
and the individual stored energies are summed to obtain a
total. Finally, the values of the free parameters are determined
numerically by minimizing the total stored energy over those
parameters. The resulting potentials can then be used for
subsequent numerical analyses, such as the determination of
equivalent circuit models and so on. In contrast, the approach
taken here employs a few potential functions that are valid
over large regions of an inductor, each having again a few free
parameters. Moreover, the determination and minimization
of stored energy is done analytically, so that all subsequent
analyses can remain analytical as opposed to becoming nu-
merical. This results in analytic expressions for the equivalent
circuit models that can be examined for physical insight and
rapidly evaluated during iterative design optimization. Such
an approach has been used to analyze the magnetic [27] and
thermal [28] behavior of electric machines.

B. Air Fields

The first modeling step is to determine the toroidal magnetic
fields inside the inductor core, and the poloidal magnetic
fields outside the inductor. Since these fields will be used to
determine boundary conditions for loss calculations, they must
include the effects of the gaps between winding turns as argued
from Fig. 2. Here, the winding is assumed to be perfectly
conducting, and the energy method discussed Section III-A is
employed over three steps. First, the two spaces are segmented
into a few small regions, and functions are selected for the
magnetic vector potential A in each region. Following [25] the
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only constraints on the functions are that they be continuous
from region to region, and that the associated magnetic fields
be parallel to the surfaces of the perfectly-conducting winding.
Next, the magnetic field in each region is determined from
its vector potential and used to determine the stored magnetic
energy in that region. Finally, the total stored magnetic energy
is minimized to determine any free parameters included in the
original vector potentials. The resulting magnetic field can then
be used to determine winding inductance, surface currents, and
losses as discussed in Subsection III-C.

Consider first the toroidal field inside the core shown in
Fig. 3. This figure is a Cartesian approximation to the actual
circular geometry. This core is divided into three regions
having a common origin. Because the poloidal currents, Jz
in the figure are ẑ-directed, the vector potential is too. Corre-
spondingly, the vector potentials are selected to be

Az1 =−
2x
D

+C1 sin
(

π 2x
D

)
eβyy (1)

Az2 = −2x
D

+

(
1+

2x
D

)
C3 sin

(
π y
G

)
+C1 sin

(
2π x

D

)(
1+C2 sin

(
π y
G

))
(2)

Az3 =C3 sin
(

π y
G

)
e−βxx (3)

where C1, C2, C3, βy and βx are free parameters. In each region
the magnetic field, H̄ is given by

µ◦H̄ = ∇× Ā . (4)

Using this magnetic field, the total stored magnetic energy E
is determined from

E =
∫

µ0

2
|H|2 dV (5)

as a function of the free parameters where the integral is taken
over Region 1, and the left half of Regions 2 and 3. Finally, by
minimizing E, the free parameters are determined as functions
of the geometric and physical parameters of the inductor. Thus,
the free parameters become
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In the analysis above, one approximation must be noted. In
(5) it is assumed that βx and βy are large enough to permit

Fig. 3. A schematic of the toroidal core as viewed from the edge of the
inductor looking into the figure in the direction of radial current flow. One
full and two partial winding turns are visible in this view.

Fig. 4. Magnetic field lines in the gap between two adjacent windings in a
toroidal inductor as plotted by the analytical model calculation (top) and by
a COMSOL numerical simulation (bottom).

the integration of the exponential terms to infinity. This is
observed to be the case through FEA for typical geometries.

To illustrate the results derived above, Fig. 4 plots the H̄
lines derived from (4) and an FEA simulation for a sample
inductor. As observed in the figure, the H̄ lines from the
analytical model are similar to the H̄ lines computed by FEA.

In Fig. 5 the space outside the inductor is divided into five
regions. As for toroidal fields in the core, simple magnetic
vector potentials for these regions are selected with free
parameters to be optimized. For simplicity, we provide here
only the magnetic vector potentials because the expressions
that follow are long. These expressions are determined by
Maple [29] and evaluated directly with MatLab [30] mainly
without human intervention. The vector potentials in the five
regions are selected to be

Aφ1 =
A0ρ

RI
, Aφ2 =

A0ρ

RI

(
D
2 +T

z

)n

, Aφ5 =
A0RORI

ρ2 (10)

Aφ3 =
A0RI

ρ

(
D
2 +T

z

)n

, Aφ4 =
A0RORI

ρ2

(
D
2 +T

z

)n

(11)

where n is a free parameter and A0 is a normalization factor.
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Fig. 5. A schematic of upper half of the toroidal inductor cross section. We
have cylindrical symmetry around z axis.

Fig. 6. Conductor geometry for magnetic diffusion analysis.

C. Winding Fields

In Subsection III-B it was assumed that the winding was
perfectly conducting. Based on this assumption, the magnetic
fields in the air regions of the inductor were determined. In
contrast, this section focuses on the fields in the winding, and
ultimately on the energy stored and losses in the winding,
when its conductors are imperfect.

The analysis presented here is perturbational in the sense
that it is assumes that the analysis of Subsection III-B still
holds even though the winding is no longer a perfect conduc-
tor. In other words, the winding is still sufficiently perfectly
conducting to justify the analysis of Subsection III-B. In
this case, the magnetic fields determined in Subsection III-B
provide boundary conditions for a magnetic-diffusion analysis
of the winding. This analysis begins with Fig. 6 which shows
the edge view of a winding of thickness T , conductivity σ and
free-space permeability µ◦. The conductor carries a current
density Jz in the ẑ direction. This current density terminates
the ŷ-directed magnetic field Hy that exists just outside the
conductor at x = T . By x = 0, the magnetic field is fully
terminated by Jz, and hence vanishes.

Following [31] and [32], with the boundary conditions
described above, the magnetic field inside the winding is

Hy = ℜ

{
H◦

sinh(αx)
sinh(αT )

e jωt
}

, (12)

and the current density inside the conductor is

Jz = ℜ

{
αH◦

cosh(αx)
sinh(αT )

e jωt
}

, (13)

where H◦ is the peak magnetic field at x= T , ω is the temporal
frequency of that magnetic field, and

α = (1+ j)/δ , δ =
√

2/ωµ◦σ . (14)

The magnetic field and current density can now be used to
determine the time-average magnetic stored energy density

〈W 〉 and the time-average dissipated power density 〈P〉 in the
winding as follows. The stored magnetic energy density is

〈W 〉 =
∫ T

0

µ◦
4
|Hy|2dx

=
µ◦H2

◦δ

8
sinh(2T/δ )− sin(2T/δ )

cosh(2T/δ )− cos(2T/δ )
, (15)

and the dissipated power density is

〈P〉 =
∫ T

0

1
2σ
|Jz|2dx

=
H2
◦

2σδ

sinh(2T/δ )− sin(2T/δ )

cosh(2T/δ )− cos(2T/δ )
. (16)

The two densities are surface densities in the y-z plane. Equa-
tions (15) and (16), together with the formulation of Section
III-B, represent a departure from the traditional method of
modeling winding phenomena that rely on curve fitting [15]
or Wheeler’s formula [16].

As noted in Section II, the inductor winding terminates a
toroidal magnetic field on one side and a poloidal magnetic
field on the other. Thus both orientations of magnetic field
and current density exist in all conductors. Because the two
magnetic fields are spatially orthogonal, and the two current
densities are spatially orthogonal, their cross products are not
present in the generalization of (15) and (16). Therefore, (15)
and (16) may be used twice to determine the stored magnetic
energy and loss for each conductor, once for toroidal magnetic
fields and poloidal currents, and once for the poloidal magnetic
fields and toroidal currents.

D. Equivalent Circuit

This subsection develops an equivalent-circuit inductor model
for sinusoidal steady-state operation. Such models are useful
because they capture what is naturally measured during a
characterization experiment, namely inductor impedance as
a function of frequency. They are also useful for power cir-
cuit co-optimization and design during steady-state operation.
Here, the model is presented as a series inductance L and
resistance R as functions of frequency.

Consider first the inductance, which represents energy stor-
age in the inductor. The four components of this inductance are
those associated with magnetic energy stored in the toroidal
fields inside the air core and the winding, and those associated
with magnetic energy stored in the poloidal fields outside the
inductor and inside the winding.

For the purposes of computing stored energy, the toroidal
magnetic fields inside the inductor may be assumed to follow
concentric closed circular paths. This leads to the traditional
inductance LAT for a toroidal air core inductor given by [33]

LAT =
µ◦N2D

2π
ln(RO/RI) . (17)

Alternatively, the magnetic fields from Subsection III-B can be
used to determine LAT . However, experience shows that the
two inductances are nearly equal except for short inductors
with large winding gaps, that is, with small D and large G.
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Given the simplicity of (17), it is adopted here.

The poloidal magnetic fields outside the inductor are not
as easily modeled as those inside the inductor. However,
experience [15] shows that treating the inductor as a single turn
wire loop following [34] or [35] yields a useful approximation
to the poloidal-field inductance given by

LAP =
µ◦(RO +RI)

2

(
ln
(

8(RO +RI)

(RO−RI)

)
−2
)

. (18)

Again, the magnetic fields from Subsection III-B can be used
to determine LAP. However, given the simplicity of (18) it too
is adopted here.

To determine the inductances associate with magnetic en-
ergy stored in the toroidal and poloidal fields in the winding,
(15) is integrated over the corresponding winding surfaces and
equated to the corresponding time-average stored magnetic
energies written in terms of the inductances. This yields

1
4

LWT I2
◦ =

∫
SzP

∫
SyP

〈W 〉 dy dz (19)

1
4

LWPI2
◦ =

∫
SzT

∫
SzT

〈W 〉 dy dz (20)

where I◦ is the peak current at the inductor terminals. In (19),
SyP and SzP denote the ŷ-directed lateral span and the ẑ-directed
path, respectively, of the winding as it carries the poloidal
currents on its inner surface. SyP is extended to x=∞ in Region
3 in Fig. 3. In (20), SyT and SzT denote the ŷ-directed lateral
span and the ẑ-directed path, respectively, of the winding as it
carries the toroidal currents on its outer surface. SyT includes
the surfaces in Regions 1, 3 and 5 in Fig. 5. In both cases,
ŷ and ẑ refer to the transverse and longitudinal directions in
Fig. 6. Both (19) and (20) involve (15), and hence H◦. There,
H◦ is the peak magnetic field evaluated at the corresponding
winding surface as developed in Subsection III-B. Finally, I◦
is obtained by integrating the ẑ-directed surface current, which
is equivalent to Hy from Subsection III-B, over either winding
surface according to

I◦ =
∫

SyT

H◦ dy =
∫

SyP

H◦ dy . (21)

The complete inductance is

L = LAT +LAP +LWT +LWP . (22)

The four inductance terms are placed in series in (22) because
their stored energies are driven by the same terminal current.

To determine the resistances associated with loss in the
winding, (16) is integrated over the corresponding winding
surfaces and equated to the corresponding time-average power
dissipation written in terms of the resistances. This results in

1
2

RWT I2
◦ =

∫
SzP

∫
SyP

〈P〉 dy dz (23)

1
2

RWPI2
◦ =

∫
SzT

∫
SzT

〈P〉 dy dz . (24)

(a)

(b)

Fig. 7. Semi-distributed model for estimating self resonance frequency (a)
and reduced circuit model (b).

The complete resistance is

R = RWT +RWP . (25)

The individual resistances in (25) are again placed in series
because their losses are driven by the same terminal current.
For the same reason, R belongs in series with L.

It is important to observe that (19), (20), (21), (23) and (24)
all involve the same approximation. In particular, (15) and (16)
are developed for a conductor assuming uniform fields over y
and z. That is, Hy at the winding surface is uniform in Fig. 6.
Yet, as observed in Fig. 2 and developed in Subsection III-B,
Hy at the winding surface, as represented by H◦ in (15) and
(16), is not uniform. This three-dimensional character of the
magnetic diffusion is ignored, and H◦ as used in (15), (16)
and (21) is taken to be a function of y and z for the purposes
of integration in (19), (20), (21), (23) and (24).

E. Parasitic Capacitance & Self Resonance

Parasitic capacitance between turns, and the self resonance
that it creates, limits the performance of an inductor and
degrades Q in high-frequency integrated power electronics.
Thus, it is useful to estimate the self-resonance frequency.
This is accomplished with the semi-distributed model shown
in Fig. III-E(a), appropriate for an inductor fabricated on/in an
insulating substrate. In this model, the inductor is treated as a
leakage-free multi-winding transformer with one transformer
winding per inductor turn, and a parasitic capacitor between
each pair of neighboring inductor turns. Given the geometry of
the inductors, the magnetic energy stored in the transformer
is only that associated with LAT and LWT . Analysis of the
distributed circuit shows that it is equivalent to LAT and
LWT in parallel with a single capacitor having capacitance
C(N − 1)/N. This leads to the expanded equivalent circuit
shown in Fig. III-E(b).

IV. FABRICATION

To minimize substrate losses, the inductors considered here are
assumed to be microfabricated on/in insulating substrates. The
experimental inductors reported in Section V were fabricated
in SU-8 molds on glass substrates. Their fabrication details are
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most similar to those reported in [24], though the inductors in
[24] were embedded in conducting silicon substrates.

The microfabrication of toroidal air-core inductors employs
high-aspect-ratio molding and electroplating to form a three-
dimensional copper winding. A key step is the fabrication
of high-aspect-ratio near-mm-tall SU-8 vias filled with elec-
troplated copper. This fabrication process relies on multiple
steps of copper electroplating through photoresist molds. First,
the bottom copper conductors are electroplated through a
removable mold. A thick SU-8 mold is then weight-casted
and lithographically patterned to create high-aspect-ratio vias.
Using a mesh seed layer evaporated at the start of the process,
the vertical conductors are electroplated through these 0.5-
mm-tall vias. A spray coating technique is then utilized to
create the mold for the electrodeposition of the top conductors.
After conductor fabrication and mold removal, the mesh seed
layer is etched away to individually isolate the turns, resulting
in three-dimensional microfabricated toroidal inductors. Induc-
tors microfabricated by the process described above, and tested
in Section V, are generally characterized by a cavity height
D up to 0.5 mm, a conductor thickness T up to 30 µm, a
winding gap G down to 100 µm, and a minimum conductor
width at the inner radius RI down to 80 µm.

V. MODEL VERIFICATION

This section compares the inductance and resistance predicted
by the models presented in Section III to those calculated by
FEA and those measured through experiment.

A. Finite Element Analysis

Table I presents a comparison between the winding loss model
discussed in Section III and 2D FEA simulation for nine cases.
Each case has a different combination of winding width (Y )
and winding thickness (T ); δ denotes the winding skin depth.
For each combination of Y and T , the gap G between turns is
100 µm. The modeled loss is based upon a y-only integration
of (23). Table I also presents an equivalent loss density based
on a skin-depth (SD) model in which the winding currents
are uniformly distributed in the ŷ direction over the surface
of a turn. The skin-depth model does not properly account for
current crowding at the winding corners near the gaps between
turns, nor for currents along the edges. This could lead to either
an over estimate of losses, or an under estimate, depending on
geometry. For each combination the table gives the losses in
one turn per meter length as computed using COMSOL FEA,
the model based upon (23), and the skin-depth model. The
table also presents the percentage errors in both models relative
to the FEA simulation. The table shows that the analytic model
provides a much better match to the COMSOL FEA than does
the skin-depth model.

Table II presents a comparison between the winding loss
model discussed in Section III and 3D FEA simulation also
for nine cases. The table presents the resistance extracted from
FEA, the modeled resistance from (25), and a resistance based
on a skin-depth model. The model from Section III exhibits
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Fig. 8. Comparison between measured and modeled inductance and quality
factor.

Fig. 9. Photographs of: (a) a micro-fabricated inductor bonded to a test
board which is then connected to the ZVS converter; (b) a magnification of
the bonding using gold wires; and (c) an LED driver demonstration.

errors in resistance of less than 3.5%, whereas the skin depth
model has errors as high as 24%.

B. Experimental Results

Fig. 8 shows the measured and modeled electrical characteriza-
tion of a 650-µm-tall on-glass inductor fabricated with metal-
encapsulated polymer vias [36]. The measurements were made
by HP-4194 impedance analyzer. The modeled and measured
inductance match well up to 100 MHz. The quality factor
based on the models of Section III, shown by the solid red line,
fits well within the measurement error bounds shown by dash-
dot green lines, up to 30 MHz, while the simple skin-depth
model under estimates the measured quality factor. Finally, a
rough estimate of the parasitic capacitance C is 30 fF, which,
from Figure III-E yields a resonance frequency near 3.5 GHz.
This is well above the experimental frequencies in Fig. 8.

C. In-Circuit Measurements

This subsection examines the utility of the models developed
here in predicting the performance of a microfabricated induc-
tor in a power electronic circuit. An inductor was operated in a
resonant zero-voltage-switching (ZVS) buck converter driving
an LED load as shown in photographs in Fig. 9. Its inductance
and resistance were extracted from experimental voltage and
current measurements. Four experiments were performed in
which the converter operated at different power levels. Dur-
ing each experiment the inductor voltage and current were
recorded. Care was taken to compensate for the measurement
delays of the oscilloscope channels to preserve accuracy.

The recorded voltage and current was processed to deter-
mine the inductance and resistance of the inductor. Table III
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TABLE I
COMPARISON BETWEEN LOSS CALCULATIONS FROM 2D FEA, SECTION III AND THE SKIN-DEPTH MODEL. IN THIS TABLE, * INDICATES THAT THE

CALCULATIONS ARE ACTUALLY PERFORMED FOR A WINDING THICKNESS OF T = 4δ .
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100 4.82 5.10 7.0 31.7 5.4 4.55 4.4 7.0 34.5 -3.8 4.55 4.33 7.0 35.2 -4.9
300 2.02* 2.04* 2.3 14.2* 1.4* 1.99 1.96 2.3 24.4 -1.4 1.99 1.96 2.3 24.4 -1.9

1000 0.675 0.680 0.7 3.8 0.6 0.669 0.665 0.7 4.8 -0.6 0.67 0.66 0.7 4.6 -0.7

TABLE II
COMPARISON BETWEEN LOSS CALCULATIONS FROM 3D FEA, SECTION III AND THE SKIN-DEPTH MODEL.
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2 16 20 200 50 200 0.0735 0.0725 0.0800 -1.05 8.1 -7.7
3 16 10 200 80 200 0.0492 0.0494 0.0564 0.52 12.8 24.5
4 16 10 200 80 1000 0.0765 0.0792 0.0894 3.52 14.4 4.1
5 32 10 150 50 200 0.198 0.1991 0.2425 -0.94 18.4 19.5
6 32 20 150 50 200 0.282 0.2815 0.3435 -0.02 17.7 -109.2
7 32 5 150 80 240 0.135 0.1361 0.1765 1.44 23.5 16.3
8 32 10 150 80 240 0.194 0.1939 0.2497 -0.07 22.3 343.6
9 32 20 150 80 240 0.275 0.2742 0.3531 -0.28 22.2 -79.7

summarizes the results of the four experiments. It shows a
comparison between the inductance and resistance extracted
from the experimental voltage and current measurements,
modeled according to (22) and (25), and measured with the
network analyzer. It also shows the resistances based upon
the skin-depth method. The extracted, modeled and measured
inductances and resistance agree well considering that the
extracted parameters include an external wiring component.
The resistance from the skin-depth model is consistently
higher than the modeled and measured resistance.

VI. SUMMARY & CONCLUSIONS

This paper has presented the development and verification
of a sinusoidal-steady-state equivalent-circuit model for mi-
crofabricated inductors intended for use in integrated power
electronics. These inductors have a low profile, a toroidal air
core, and a single-layer winding fabricated via high-aspect-
ratio molding and electroplating. They are typically up to 1
mm tall and 1 cm in diameter, and are fabricated with windings
having a thickness near 50 µm with a minimum feature size
near 100 µm. Operating near 10 MHz, they could exhibit an
inductance up to 700 nH and a quality factor up to 20.

The inductors considered here have a important gap between
winding turns, greater than a few skin depths, due to fabrica-
tion limitations. This gap increases the losses and equivalent
resistance by causing current crowding at the nearby winding
edges. This makes the equivalent resistance more difficult to

model. The low profile enhances the significance of magnetic
energy stored in the winding, which, together with the winding
gap, also makes the equivalent inductance more difficult to
model. The models presented here account for these effects.
The models begin with expressions for the magnetic fields in
the air core and outside the inductor that are derived from a
minimized stored energy formulation. These fields next serve
as boundary conditions for a magnetic-diffusion analysis of
the magnetic fields and current density in the winding. The
resulting stored energy and losses throughout the inductor
are summarized in a sinusoidal-steady-state equivalent-circuit
model. To this model is added a parasitic capacitance to assist
in the estimation of self resonance.

The models are verified against results from 2D FEA, 3D
FEA, direct measurement and in-circuit experimentation. In
all cases, the equivalent-circuit inductance and resistance is
observed to be accurate to within several percent. Generally,
the models perform best as the gap between the turns decreases
relative to the turn width.
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