Nonlinear sensitivity enhancement of resonant microsensors and its application to low power magnetic sensing

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2011 J. Micromech. Microeng. 21 045004
(http://iopscience.iop.org/0960-1317/21/4/045004)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 130.207.50.192
The article was downloaded on 23/03/2011 at 15:51

Please note that terms and conditions apply.
Nonlinear sensitivity enhancement of resonant microsensors and its application to low power magnetic sensing

Seungkeun Choi, Yong-Kyu Yoon, Seong-Hyok Kim and Mark G Allen

School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA 30332, USA
E-mail: seungkeun.choi@gatech.edu and mallen@gatech.edu

Received 14 November 2010, in final form 21 January 2011
Published 25 February 2011
Online at stacks.iop.org/JMM/21/045004

Abstract
Nonlinearities in resonating structures can be used to increase the sensitivity of sensors based on these structures. An example system, a torsional resonant magnetic sensor, is analyzed to illustrate the effect. The system is composed of a disk-type silicon resonator combined with a permanent magnet supported by multiple micromachined silicon beams, excitation and sensing coils, and a magnetic feedback loop. The effects of nonlinearity on sensitivity have been characterized as a function of beam width and the number of beams using analytical models as well as numerical analysis. By increasing the number of beams while reducing the beam width (and thereby maintaining constant nominal linear resonant frequency), large nonlinearity has been obtained, resulting in an increased change in operating resonant frequency per unit applied magnetic field. The interaction between an external magnetic field surrounding the sensor and the permanent magnet generates a rotating torque on the silicon resonator disk, changing the effective stiffness of the beams and therefore the resonant frequency of the sensor. By monitoring shifts in the resonant frequency while changing the orientation of the sensor with respect to the external magnetic field, the direction of the external magnetic field can be determined. Self-resonance-based electromagnetic excitation of the mechanical resonator enables it to operate with very low power consumption and low excitation voltage. A total system power consumption of less than 140 \(\mu \)W and a resonator actuation voltage of 1.4 mVrms from a \(\pm 1.2 \) V power supply have been demonstrated with a sensitivity of 0.28 Hz/rotational degree to the Earth’s magnetic field.

(Some figures in this article are in colour only in the electronic version)

1. Introduction
MEMS-based mechanically resonant sensors, in which the sensor resonant frequency shifts in response to the measurand, are widely utilized [5]. Resonant sensors with frequency output are of particular interest, as frequency can be measured with high precision. Such sensors are typically operated in their linear resonant regime. However, substantial improvements in the resonant sensors’ performance (functionally defined as the change in resonant frequency per unit measurand change) can be obtained by designing the sensors to operate far into their nonlinear regime [10, 18, 20]. Significant efforts have been focused on understanding the nonlinearity associated with the large oscillation amplitude of resonators, and tuning it externally [18, 20]. For example, Kozinsky et al use a nonlinear model with a third-order Taylor series expansion of the electrostatic forcing applied to a nanoresonator in order to tune the effective Duffing coefficient using an external electrostatic potential. They are able to tune nonlinearity and, consequently, the dynamic range and resonant frequency of nanomechanical resonators [20]. However, less attention has been given to how nonlinearity can be increased by changing the resonator geometry, and how to
exploit the increasing nonlinearity to increase the sensitivity of resonant sensors.

As an example, consider a magnetic field sensor for detecting the Earth’s magnetic field. Such an electronic compass system is finding applications in ultra-low-power mobile devices, such as wristwatches, smart phones, and portable global positioning systems (GPS). Hence, developing a small-size, low-power-consumption, and low-operation-voltage magnetic field sensor that can detect the direction of the Earth’s magnetic field is of great interest.

Even though there have been a variety of approaches to the electronic compass successfully demonstrated [8, 23, 24], such as Hall-effect sensors [27, 31, 32, 39], fluxgate [2–4, 11, 13, 16, 25, 26, 28, 29, 33–35], anisotropic magnetoresistance (AMR) sensors [30, 31, 36, 37, 40], giant magnetoresistance sensors [31, 36, 37], resonant magnetic sensors [1, 5–7, 12, 15, 19, 21, 38], and magnetometers [17, 41], the realization of extremely low power electronic compasses has been elusive.

Earlier, we reported an electrostatically excited, epoxy-based micromachined resonant magnetic field sensor that exhibited very low power consumption with sensitivity sufficient to measure the Earth’s magnetic field [22]. A resonant comb drive structure was fabricated with a photo-definable epoxy (SU-8) and a permanent magnet (NdFeB) was glued onto the center of the comb drive disk. The interaction between an external magnetic field and the permanent magnet causes a shift in the fundamental resonant frequency \(f_0 \) of the device. Although the operating voltage was lower (~10 V) compared to most of the other electrostatic-based sensors, the limited thermal and mechanical stabilities of SU-8 were drawbacks. Alternatively, we demonstrated a low-driving voltage (100 mV) and CMOS-compatible silicon-based resonant magnetic field sensor incorporating a permanent magnet, an external coil for the excitation, and an assembled Hall-effect sensor for the detection. However, it consumed significant power mainly due to the Hall-effect sensor [9].

This paper presents a complete magnetic sensing system that consumes less than 200 \(\mu \text{W} \) of power in continuous operation, and is capable of sensing the Earth’s magnetic field. The system is composed of a micromachined silicon resonator combined with a permanent magnet, excitation and sensing coils, and a magnetic feedback loop for the completion of the system. This effect is illustrated through the use of a magnetically torqued, rotationally resonant MEMS platform. Platform structural parameters, such as the beam width and the number of beams, are parametrically varied subject to the constraint of constant small-deflection resonant frequency.

2. Device concept and theoretical modeling

Consider a permanent magnet torsionally supported on a resonant disk, which is in turn supported by flexures (figure 1). The interaction between an external magnetic field \(H \) such as the Earth’s magnetic field and the magnetization of the permanent magnet \(M \) generates a torque that deflects and may change the stiffness of the beam, resulting in a change in the resonant frequency of the sensor (figure 1).

When the magnetization \(M \) and the external magnetic field \(H \) are not perfectly aligned (\(\theta \) is neither 0° nor 180°), the center disk rotates by an angle \(\alpha \) due to the magnetic torque \(T \) (figure 1) to reach the equilibrium position. This angle is determined by solving the equilibrium equation, stating that the torques acting on the system must sum to zero,

\[
\kappa_\alpha - T_0 \sin(\theta - \alpha) = 0,
\]

where \(\kappa_\alpha \) is the torsional linear stiffness coefficient of the beams and \(T_0 \), the maximum amplitude of the magnetic torque, is given by equation (2) for a magnet of volume \(V \) and magnetization \(M \).

\[
T_0 = \mu_0 MVH,
\]

where \(\mu_0 = 4\pi \times 10^{-7} \, \text{H m}^{-1} \) is the permeability of free space. In the case of large rotation angles, the beams are subject to large deflections and their load-deflection behavior is no longer linear [14]. A cubic term multiplied by a torsional nonlinear stiffness coefficient, \(k_{\alpha,3} \), has to be added to the equilibrium equation,

\[
k_\alpha \alpha + k_{\alpha,3} \alpha^3 - T_0 \sin(\theta - \alpha) = 0.
\]

Nonlinear effects have to be taken into account whenever the deflection (approximated to the product of the angle of deflection, \(\alpha \), and the radius of the center disk, \(r \)) is comparable to or larger than the width of one beam, \(w_b \) [14]. The beams tend to stiffen as the angular deviation increases. Hence, the resonator oscillating around the new equilibrium position, \(\alpha \), exhibits a higher resonant frequency. Assuming a torsional vibratory system with a single degree of freedom, the expression for the fundamental resonant frequency of the sensor is obtained by solving the differential equation satisfied by the angle of oscillation, \(\psi \) [22],

\[
I \ddot{\psi} + k_1 (\alpha + \psi) + k_{\alpha,3} (\alpha + \psi)^3 = T_0 \sin(\theta - (\alpha + \psi)),
\]

where \(I \) is the platform moment of inertia of the system. For small oscillation angles of \(\psi \), equation (4) becomes

\[
I \ddot{\psi} + (k_1 + 3k_{\alpha,3} \alpha^2) + T_0 \cos(\theta - \alpha) \psi = T_0 \sin(\theta - \alpha) - k_\alpha \alpha - k_{\alpha,3} \alpha^3.
\]
Hence, when the magnetization and the external magnetic field are not perfectly aligned, the resonant frequency of the system is

\[
f_r = \frac{1}{2\pi} \sqrt{\frac{k_1 + 3k_{nl} \alpha^2 + T_0 \cos(\theta - \alpha)}{I}}.
\]

(6)

To solve this equation, \(k_1 \) and \(k_{nl} \), and the relationship between \(\theta \) and \(\alpha \) have to be determined. Figure 2 shows that \(k_1 \) and \(k_{nl} \) can be approximated by the nonlinear equations of the beam that has one end clamped and the other end guided subject to large deflection [14].

When the direction of magnetization is parallel to the external field, the magnetic torque is zero and the static resonator does not experience any rotation, i.e. \(\alpha = 0 \). However, when the resonator is oscillating, the torque increases as the rotational resonator is pulled away from its equilibrium position. Assuming small oscillation and negligible damping, equation (4) can now be expressed as

\[
I \ddot{\phi} + k_\phi \phi - T_0 \sin(\theta - \phi) = 0.
\]

(7)

Hence, when the direction of magnetization is parallel to the external field, the expression of the resonant frequency is given by

\[
f_r = \frac{1}{2\pi} \sqrt{\frac{k_1 + T_0 \cos \theta}{I}}.
\]

(8)

where \(\theta \) is 0° or 180°.

Numerical values of the torsional linear \((k_1) \) and nonlinear \((k_{nl}) \) stiffness coefficients are obtained by considering the torque and force relationship, as shown in figure 2,

\[
T = k_1 \alpha + k_{nl} \alpha^3 = P \cdot r = k_{3,\alpha} \cdot r \cdot \delta + k_{3,\alpha} \cdot r \cdot \delta^3,
\]

\[
= k_{3,\alpha} \cdot r^2 \cdot \alpha + k_{3,\alpha} \cdot r^4 \cdot \alpha^3.
\]

(9)

(10)

Therefore, the torsional linear \((k_1) \) and nonlinear stiffness \((k_{nl}) \) coefficients of the resonator with the number of beams \((N_b) \) are

\[
k_1 = N_b k_{3,\alpha} r^2 \quad \text{and} \quad k_{nl} = N_b k_{3,\alpha} r^4.
\]

(11)

The deflection \(\delta \) for a concentrated load \(P \) at the end of a beam of length \(l_b \), thickness \(t_b \), mass moment of inertia \(I \), and elastic modulus \(E \) where the loaded end of the beam is guided, as shown in figure 2(a), can be found by simultaneously solving the following equations [14],

\[
P = \frac{E \cdot t_b \cdot l_b^4}{3 \cdot I} \sqrt{\frac{2}{3} u^3 \left(\frac{3}{2} \cdot \frac{1}{2} \tanh^2 u - \frac{3}{2} \frac{\tanh u}{u} \right)^{-\frac{1}{2}}}.
\]

(12)

\[
\delta = w_0 \sqrt{\frac{2}{3} (u - \tanh u) \left(\frac{3}{2} - \frac{1}{2} \tanh^2 u - \frac{3}{2} \frac{\tanh u}{u} \right)^{-\frac{1}{2}}}.
\]

(13)

\[
u = \sqrt{\frac{N}{EI \left(\frac{l_b}{2} \right)}}.
\]

(14)

where \(N \) is the normal force that develops in the beam as a result of the applied force. The numerical values for the applied force \((P) \) and the deflection \((\delta) \) are calculated at a given \(\alpha \) (12)-(14). As a result, the force \((P) \) can be expressed as a function of the deflection \((\delta) \). The functional relationship between deflection and force is described using the following equation,

\[
P = k_{3,\alpha} \delta + k_{3,\alpha} \delta^3.
\]

(15)

where \(k_{3,\alpha} \) and \(k_{3,\alpha} \) are lateral linear and nonlinear stiffness coefficients of a single beam with one end clamped and one end guided, respectively. Equation (15) is further modified to find the stiffness coefficients easily as

\[
\frac{P}{\delta} = k_{3,\alpha} \delta^2 + k_{3,\alpha}.
\]

(16)

The theoretical analysis is performed on a silicon micromechanical resonator, which consists of a permanent magnet torsionally supported by four beams. The sensitivity of the resonator is characterized by varying the width of the beams (10, 20 and 30 \(\mu \)m). All other parameters are listed in table 1. A cylindrical permanent magnet is used throughout modeling and measurement (figure 1). Figure 3 shows plots from (16) where lateral linear \((k_{3,\alpha}) \) and nonlinear \((k_{3,\alpha}) \) stiffness coefficients are found. The nonlinear stiffness coefficient \((k_{3,\alpha}) \) is the slope of this curve and the linear stiffness coefficient \((k_{3,\alpha}) \) is the intercept of the curve with the \(\gamma \) axis. The torsional stiffness of the beams, \(k_1 \) and \(k_{nl} \), are calculated using (11). The inset in figure 3 shows the nonlinear deflection of a beam. \(T_0 \) is 7.6 \(\times 10^{-8} \), 1.5 \(\times 10^{-7} \), and 2.9 \(\times 10^{-6} \) N m for the external magnetic fields 50 \(\mu \)T, 0.975 mT, and 1.95 mT, respectively.

Once \(k_1 \) and \(k_{nl} \) are found, the nonlinear equation (3) is solved numerically with MATLAB to find the deviation angle \((\alpha) \) as a function of \(\theta \). Finally, the resonant frequency is calculated using (6). Figures 4(a) and (b) show the plot of \(\alpha \) (in degree) as a function of \(\theta \) (in degree) and the resonant frequency of the magnetic field sensor as a function of \(\theta \) for the beam width of 20 \(\mu \)m. As the external magnetic field.
The normalized sensitivity is defined as the deviation angle and the resonant frequency divided by the maximum and minimum resonant frequencies as a function of the external magnetic fields of 50 μT, 0.975 mT, and 1.95 mT. The normalized sensitivity can be argued from (6). Consider first the calculation of \(f_{\text{min}} \). According to (8), the minimum resonant frequency \(f_{\text{min}} \) occurs at \(\theta = 0^\circ \), where the torque \(T_0 \) is zero because the direction of magnetization is parallel to the external field. As \(T_0 \) increases from zero, both linear \((k_l) \) and nonlinear \((k_{nl}) \) terms of (6) additively increase the resonant frequency. Therefore, the normalized sensitivity, \((f_{\text{max}} − f_{\text{min}})/f_{\text{min}} \) per rotational degree, will be larger if the nonlinear terms are present. This will be developed more rigorously below.

2.1. Case 1: \(3k_{nl} \cdot \alpha^2 \) is larger than \(T_0 \cdot \cos(\theta − \alpha) \)

When the magnitude of \(3k_{nl} \cdot \alpha^2 \) is larger than the magnitude of \(T_0 \cdot \cos(\theta − \alpha) \) in (6), the resonant frequency curve resembles the shape of an \(|\alpha|\) curve. The \(|\alpha|\) curve is symmetric with respect to \(\theta = 180^\circ \) and has two peaks at 90° and 270°. The \(|\alpha|\) curve is also symmetric with respect to \(\theta = 0^\circ \) and \(\theta = 270^\circ \) in the range of 0°–180° and 180°–360°, respectively. This is the case when the external magnetic fields are 0.975 and 1.95 mT for all three beam widths (\(w_b \) = 10, 20, and 30 μm) and when the beam width is 10 μm at the external magnetic field of 50 μT, as shown in table 2. The numerical values of \(3k_{nl} \cdot \alpha^2 \) and \(T_0 \cdot \cos(\theta − \alpha) \) are plotted in figures 5(a), (c) and (e) for the beam widths of 10, 20, and 30 μm, respectively. This shows that the magnitude of \(3k_{nl} \cdot \alpha^2 \) is larger than the magnitude of \(T_0 \cdot \cos(\theta − \alpha) \) and this magnitude difference becomes large as the beam width decreases. Even though the nonlinear stiffness coefficient \(k_{nl} \) decreases as the beam width decreases (table 2), the product of \(k_{nl} \) and \(\alpha^2 \) increases because \(\alpha^2 \) increases at a faster rate, as shown in figure 6. Accordingly, the resonant frequency curves resemble the shape of \(|\alpha|\) (figures 5(b), (d) and (f)) and the normalized sensitivity increases as the beam width

Table 1. Parameters used for theoretical analysis.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s modulus silicon ((E_s)) (GPa)</td>
<td>165</td>
</tr>
<tr>
<td>Density of silicon (kg m(^{-3}))</td>
<td>2330</td>
</tr>
<tr>
<td>Beam thickness ((t_b)) (μm)</td>
<td>200</td>
</tr>
<tr>
<td>Beam width ((w_b)) (μm)</td>
<td>10, 20, 30</td>
</tr>
<tr>
<td>Beam length ((l_b)) (mm)</td>
<td>2</td>
</tr>
<tr>
<td>Center disk radius ((r_a)) (mm)</td>
<td>1</td>
</tr>
<tr>
<td>Magnitude of magnet (kg m(^{-3}))</td>
<td>800</td>
</tr>
<tr>
<td>Magnet radius ((r_m)) (μm)</td>
<td>800</td>
</tr>
<tr>
<td>Number of beams</td>
<td>4</td>
</tr>
<tr>
<td>Mass moment of inertia (kg m(^2))</td>
<td>3.3 x 10(^{-12})</td>
</tr>
</tbody>
</table>

Figure 3. A nonlinear deflection of a single beam where one end is clamped and the other end is guided. The lateral nonlinear stiffness coefficient \(k_{nl} \) is found at the intercept \(\delta^2 = 0 \). The inset shows the nonlinear dependence of the deflection on the applied force.

Figure 4. (a) Variation in the deviation angle (\(\alpha \)) and (b) variation in the resonant frequency as a function of \(\theta \) at the external magnetic fields of 50 μT, 0.975 mT, and 1.95 mT. The simulation model has four beams and a beam width of 20 μm. The difference between the maximum and minimum resonant frequencies divided by the minimum resonant frequency over \(\theta = 0^\circ \) and \(90^\circ \) is taken as a measure of sensor performance.
The resonant frequency at \(\theta \) (figure 7) decreases. The normalized sensitivity also increases as the external magnetic field increases because of the higher torque, which causes \(f_{\text{max}} \) to increase at a given beam width (table 2).

Table 2. Effects of the beam width on sensitivity. The difference between the maximum and minimum resonant frequencies divided by the minimum resonant frequency between \(\theta = 0^\circ \) and \(90^\circ \) is taken as a measure of sensor performance. Also refer to figures 5, 7 and 8.

<table>
<thead>
<tr>
<th>Beam width ((\mu m))</th>
<th>(k_1) (10(^{-6}) N m)</th>
<th>(k_2) (10(^{-3}) N m)</th>
<th>Resonant frequency at (\theta = 0^\circ) (Hz)</th>
<th>(\Delta f_c/(f_c \text{ degree}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>16.56</td>
<td>91.2</td>
<td>358.3</td>
<td>1.5</td>
</tr>
<tr>
<td>20</td>
<td>132.13</td>
<td>187</td>
<td>1009.4</td>
<td>0.0112</td>
</tr>
<tr>
<td>30</td>
<td>445.48</td>
<td>316</td>
<td>1853.5</td>
<td>0.00094</td>
</tr>
</tbody>
</table>

Figure 5. Comparison of \(3k_{n} \cdot \alpha^2 \) and \(T_{0} \cdot \cos(\theta - \alpha) \) for the beam widths of (a) 10, (c) 20, and (e) 30 \(\mu m \) and the resonant frequency curves for the beam widths of (b) 10, (d) 20, and (f) 30 \(\mu m \) at various external magnetic fields.

2.2. Case 2: \(3k_{n} \cdot \alpha^2 \) is comparable to \(T_{0} \cdot \cos(\theta - \alpha) \)

This is the case when the beam width is 20 \(\mu m \) and the external magnetic field is 50 \(\mu T \), as shown in table 2. The magnitudes of \(3k_{n} \cdot \alpha^2 \) and \(T_{0} \cdot \cos(\theta - \alpha) \) are in the same order as shown in figure 7(a). The resonant frequency curve is similar to case 1 except that the resonant frequency at \(\theta = 180^\circ \) is much lower than when \(\theta = 0^\circ \) since the magnitude of the \(T_{0} \cdot \cos(\theta - \alpha) \) is minimal at \(\theta = 180^\circ \) (figure 7(b)).

2.3. Case 3: \(3k_{n} \cdot \alpha^2 \) is smaller than \(T_{0} \cdot \cos(\theta - \alpha) \)

This is the case when the beam width is 30 \(\mu m \) at the external magnetic field of 50 \(\mu T \), as shown in table 2. Figure 8(a) shows that \(T_{0} \cdot \cos(\theta - \alpha) \) is larger than \(3k_{n} \cdot \alpha^2 \) in magnitude. Accordingly, the resonant frequency curve is mainly determined by \(T_{0} \cdot \cos(\theta - \alpha) \), as shown in figure 8(b). For the previous cases, the highest resonant frequency occurs at \(\theta = 90^\circ \) and \(270^\circ \). However, for this case, the highest...
linear stiffness, k

Figure 7. When the magnitude of cases 1, 2, and 3, higher sensing performance can be achieved parameters are held constant. Based on the discussions in characterizing by varying the beam width while other nonlinear effects

In the previous sections, the sensing performance is

3. Enhancing sensing performance by exploiting nonlinear effects

In the previous sections, the sensing performance is characterized by varying the beam width while other parameters are held constant. Based on the discussions in cases 1, 2, and 3, higher sensing performance can be achieved when the magnitude of $k_{nl} \cdot \alpha^2$ is greater than that of $T_0 \cdot \cos(\theta - \alpha)$. This can be achieved by lowering the torsional linear stiffness, k_1, thereby increasing the deviation angle, α, at a given torque. Although k_{nl} decreases as the beam width decreases, the product of k_{nl} and α^2 increases since α^2 increases at a faster rate. Minimization of k_1 can be achieved by either increasing the length of the beam or reducing the width of the beam. In both cases, the mechanical resonator becomes more susceptible to shocks and vibrations and can easily be broken.

Sensing performance can also be improved by maximizing the nonlinear stiffness coefficient (k_{nl}), as was discussed before. For example, when the linear stiffness is determined, the sensitivity is maximized by increasing the nonlinearity [10]. One way of increasing k_{nl} while keeping k_1 constant is to design the mechanical resonator with thinner beams while increasing the number of beams. Thinner beams make k_1 smaller; however, this is compensated with more beams, which bring the linear stiffness (k_1) of the resonator back to its original value in order to maintain mechanical stability. Furthermore, nonlinearity increases as well because the ratio of deflection to beam width increases. In other words, even at the same amount of deflection, each beam undergoes more stress since the deflection with respect to its width increases, thereby increasing the nonlinearity of the system [14].

To illustrate this, three different resonator geometries are chosen, as shown in figure 9, and analyzed, where the numbers of beams and the widths of beams are simultaneously adjusted such that their linear stiffness coefficients are the same. The selected numbers of beams are 4, 8, and 16 and their widths are 20, 15.9, and 12.6 μm, respectively.

The deflection versus force curves are plotted for these resonators in the inset of figure 10. The structure with 16 beams exhibits the highest nonlinearity followed by eight-beam and four-beam structures in that order. The lateral linear stiffness coefficients (k_{nl}) are found to be 33, 16.5, and 8.3 N m$^{-1}$ for 4, 8, and 16 beams, respectively. Note that k_{nl} in figure 10 is obtained from a single beam. Therefore, the overall k_{nl} of the resonator is calculated by multiplying it with the number of beams. The lateral nonlinear stiffness coefficients (k_{nl}) are found to be 4.7×10^{10}, 3.6×10^{10}, and 2.9×10^{10} N m for 4, 8, and 16 beams, respectively. Hence, by using (11), the torsional linear stiffness coefficients (k_1) are calculated to be 132.13, 132.28, and 132.47 μN m for 4, 8, and 16 beams, respectively, and the torsional nonlinear stiffness coefficients (k_{nl}) are calculated to be 187, 291, and 462 mN m for 4, 8, and 16 beams, respectively. Table 3 summarizes the simulation results, including resonator dimension.

Figure 6. $3k_{nl} \cdot \alpha^2$ as a function of θ for the 10, 20, and 30 μm beam widths at the external magnetic field of 1.95 mT. Note that k_{nl} increases while $k_{nl} \cdot \alpha^2$ decreases as the beam width increases.

Figure 7. (a) Comparison of $3k_{nl} \alpha^2$ and $T_0 \cdot \cos(\theta - \alpha)$ for the beam width of 20 μm at the external magnetic field of 50 μT. Note that $3k_{nl} \alpha^2$ is comparable to $T_0 \cdot \cos(\theta - \alpha)$ in magnitude. (b) Resonant frequency as a function of θ.

S Choi et al
Figure 8. (a) Comparison of $3k_{nl}\alpha^2$ and $T_0 \cdot \cos(\theta - \alpha)$ for the beam width of 30 μm at the external magnetic field of 50 μT. Note that $T_0 \cdot \cos(\theta - \alpha)$ is larger than $3k_{nl}\alpha^2$ in magnitude. (b) Resonant frequency as a function of θ.

Figure 9. Three different resonator geometries with (a) 4 beams ($w_b = 20$ μm), (b) 8 beams ($w_b = 15.9$ μm), and (c) 16 beams ($w_b = 12.6$ μm).

Table 3. Effects of resonator geometries (beam width and number of beams) on sensitivity. The difference between the maximum and minimum resonant frequencies divided by the minimum resonant frequency between $\theta = 0^\circ$ and 90° is taken as a measure of sensor performance.

<table>
<thead>
<tr>
<th>Number of beams</th>
<th>Beam width (μm)</th>
<th>k_l (10^{-6} Nm)</th>
<th>k_{nl} (10^{-3} Nm)</th>
<th>Resonant frequency at $\theta = 0^\circ$, f_c (Hz)</th>
<th>Sensitivity $\Delta f_c / (f_c \cdot \text{degree})$ (mHz (Hz degree)$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>20</td>
<td>132.13</td>
<td>187</td>
<td>1009.38</td>
<td>0.0112 2.001 4.879</td>
</tr>
<tr>
<td>8</td>
<td>15.9</td>
<td>132.28</td>
<td>291</td>
<td>1009.95</td>
<td>0.0153 2.756 6.157</td>
</tr>
<tr>
<td>16</td>
<td>12.6</td>
<td>132.47</td>
<td>462</td>
<td>1010.68</td>
<td>0.022 3.727 7.659</td>
</tr>
</tbody>
</table>

As shown in table 3, the torsional linear stiffness coefficients, k_l, are set to be very close for the three designs by adjusting the beam width and the number of beams simultaneously. The four-beam resonator with a 20 μm beam width shows slightly lower k_l than the other two designs. As a result, the resonant frequency of the four-beam resonator is lowest among them. However, the torsional nonlinear stiffness coefficient, k_{nl}, increases as more beams are used. It is worthwhile mentioning that the narrower beam widths are used as more beams are added in order to increase the nonlinearity of a resonator while keeping its linear stiffness unchanged. Deviation angles are calculated using (3) and shown in figure 11(a). The deviation angle (α) becomes large as fewer beams are used where beam widths are simultaneously increased. Although the magnitude of α decreases as k_{nl} increases at a given θ, the product of k_{nl} and α^2 becomes large as k_{nl} increases at a given θ since k_{nl} increases at a faster rate, as shown in figure 11(b). The resonant frequencies are evaluated at 50 μT, 0.975 mT, and 1.95 mT for the three structures (figures 12(a) and (b)). In all cases, the higher the k_{nl}, the higher the sensitivity (table 3). Therefore, the concept of increasing the sensitivity by increasing the nonlinear stiffness coefficient at a given linear stiffness is demonstrated.

4. Silicon resonator fabrication and measurement

A test device to exploit the preceding phenomenon, a MEMS-based magnetic compass, was designed and fabricated. Fabrication includes two major processes: (1) fabrication of the mechanical resonator using inductively coupled plasma (ICP) silicon etching; and (2) assembly of the permanent magnet. The mechanical resonator fabrication is based
coefficients are calculated by (11).

Figure 10. A nonlinear deflection of a single beam where one end is clamped and the other end is guided. The lateral nonlinear stiffness coefficient \(k_{nl} \) corresponds to the slope and the lateral linear stiffness coefficient \(k_l \) is found at the intercept \(\delta^2 = 0 \). The inset shows the nonlinear dependence of the deflection on the applied force. The torsional linear \(k_k \) and nonlinear \(k_{nl} \) stiffness coefficients are calculated by (11).

A beam thickness of 110 μm and a beam width of 13.1 μm are hand wound on plastic tubes with a diameter of 1.5 mm (NdFeB) permanent magnet is adhered to the center of the resonator disk (figure 13(c)). Excitation and detection coils are wound on plastic tubes with a diameter of 1.5 mm and hybrid-assembled with the sensor (figure 13(d)). The number of turns is 300 for both the excitation and detection coils. The excitation and detection coils are placed in the same plane, thereby maximizing the magnetic flux linkage between the permanent magnet and the detection coil. The crosstalk between the two coils is negligible in the positive closed loop configuration.

The resonator is embedded within a positive feedback loop to form a self-resonant oscillator system (figure 14) [38]. In this configuration, the resonator is forced to oscillate at its resonant frequency without an externally applied driving signal. This type of configuration is useful in resonant sensing applications if the resonance frequency is the output signal of interest, and will be used to determine the sensitivity of the resonant sensor to magnetic field.

The excitation coil generates a time-varying magnetic field around the permanent magnet. The resonator oscillates if the natural frequency of the resonator is matched with the frequency of the time-varying magnetic field generated by the excitation coil. Accordingly, the permanent magnet adhered to the oscillating resonator also generates a time-varying magnetic field. The mechanical resonator works as a frequency-determining element in a self-oscillating amplifying feedback loop. The detection coil induces a voltage from this time-varying magnetic field generated by the oscillating permanent magnet. The output of the detection coil is connected to the input of the positive closed-loop circuit which consists of an amplifier, a phase shifter, and a Schmitt trigger. The output signal of the detection coil is amplified with the amplifier and then passed through the phase shifter and the Schmitt trigger. The phase shifter adjusts the phase of the closed loop such that the output signal of the detection coil is fed into the excitation coil in phase to form a positive feedback. The condition for a positive feedback is that a portion of the output is combined in phase with the input. The Schmitt trigger improves noise immunity and thus limits the peak-to-peak magnitude of the excitation signal to prevent large oscillation of the resonator. A frequency counter is connected at the end of the circuitry to read the resonant frequency of the resonator. An external magnetic field is applied through two Helmholtz coils.

The excitation coil utilized 1.4 mVrms with a total power consumption of 0.24 μW. The remaining circuitry, excluding

Figure 11. Deviation angles \(\alpha \) and \(3k_{nl} \cdot \alpha^2 \) for 4-, 8-, and 16-beam structures simulated at an external magnetic field of 1.95 mT. (a) Deviation angle \(\alpha \) as a function of \(\theta \). (b) Magnitude of \(3k_{nl} \cdot \alpha^2 \) as a function of \(\theta \).
Figure 12. Simulated resonant frequencies for three different designs; 4 beams ($w_b = 20 \, \mu m$), 8 beams ($w_b = 15.9 \, \mu m$), and 16 beams ($w_b = 12.6 \, \mu m$). (a) $B = 50 \, \mu T$, (b) $B = 0.975 \, mT$, and (inset) $B = 1.95 \, mT$.

Figure 13. Silicon resonator fabrication: (a) ICP etching bottom and top silicon surface, (b) SEM image of resonator with eight beams, (c) permanent magnet assembly, and (d) assembly of excitation and sensing coils.

the frequency counter, utilized low power op-amps from Analog Devices (OP 490) with a power consumption of 138 μW. The total power consumption was therefore less than 140 μW.

5. Results

Three mechanical resonators with different beam widths and numbers of beams were fabricated and tested at various external magnetic fields (figure 15); the number of beams was 3, 4, and 6 with 18.5, 14.6, and 13.1 μm beam widths, respectively. The beam widths were measured by SEM. The number of beams for the six-beam resonator was originally designed to be 8, but two of them were broken during the measurement (figure 15(c)). The broken beams were completely removed by using a laser.

The devices were tested at three different external magnetic fields: the Earth’s magnetic field (50 μT), 0.195 mT, and 0.39 mT. The results are shown in figure 16. For the three-beam and four-beam structures, the resonant frequency curve is not exactly symmetric with respect to $\theta = 180^\circ$. This is because either all of the beams in the resonator did not have
Table 4. Comparison of the normalized sensitivity (mHz (Hz degree)$^{-1}$). The resonant frequency is taken from the curve of the Earth’s magnetic field (50 μT) measurement at $\theta = 0^\circ$.

<table>
<thead>
<tr>
<th>N_b</th>
<th>w_b (μm)</th>
<th>Calculated k_l (10^{-4} N m)</th>
<th>Resonant frequency (Hz) at $\theta = 0^\circ$</th>
<th>Normalized sensitivity (mHz (Hz degree)$^{-1}$) and (sensing resolution averaged over $\theta = 0^\circ$–90$^\circ$ (Hz/degree))</th>
<th>Earth’s field</th>
<th>0.195 mT</th>
<th>0.39 mT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>18.5</td>
<td>4.07</td>
<td>1881</td>
<td>0.009 (0.016) 0.017 (0.032) 0.036 (0.068)</td>
<td>0.195 mT</td>
<td>0.017 (0.032) 0.036 (0.068)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14.6</td>
<td>1.80</td>
<td>1248.25</td>
<td>0.086 (0.107) 0.192 (0.239) 0.431 (0.538)</td>
<td>0.39 mT</td>
<td>0.192 (0.239) 0.431 (0.538)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>13.1</td>
<td>2.36</td>
<td>1437.45</td>
<td>0.196 (0.282) 0.509 (0.732) 0.876 (1.26)</td>
<td>0.195 mT</td>
<td>0.509 (0.732) 0.876 (1.26)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 14. Complete magnetic sensing system. The fabricated mechanical resonator is embedded within a positive feedback loop that tracks the changes in the resonant frequency. The resonator is electromagnetically excited and detected by coils.

The identical width or the permanent magnet was not placed in exactly the center of the resonator disk, or both. Table 4 summarizes the measurement results. A sensing resolution averaged over $\theta = 0^\circ$–90$^\circ$ in terms of the resonant frequency change per unit rotational degree is provided in parentheses in sensitivity columns in table 4. The changes in the resonant frequency, $df_c/d\theta$, are not uniform throughout the rotational angle (from $\theta = 0^\circ$ to $\theta = 360^\circ$), i.e. minimal change at $\theta = 0^\circ$, 90$^\circ$, 180$^\circ$, and 270$^\circ$ and maximal change at $\theta = 45^\circ$, 135$^\circ$, 225$^\circ$, and 315$^\circ$.

k_l is calculated using (8) and is given by $k_l = (2\pi f_c)^2 I - T_0$ at $\theta = 0^\circ$. A mass moment of inertia (I) was obtained by FEM simulation; $I = 2.92 \times 10^{-12}, 2.93 \times 10^{-12}$, and 2.90×10^{-12} kg m2 for the three-beam, four-beam, and six-beam structures, respectively. Since the resonant frequencies in table 4 are obtained from the curves of the Earth’s magnetic field measurement at $\theta = 0^\circ$ shown in figure 16, T_0 at 50 μT, 7.6×10^{-8} N m, is used to calculate k_l. The torsional linear stiffnesses of the four-beam and six-beam resonators are 44% and 58% of that of the three-beam resonator, respectively. This lower linear stiffness results in better sensing performance for the resonators with four beams and six beams than the resonator with three beams at all magnetic fields.

For the resonator with six beams, a sensitivity of 0.282 Hz/degree is obtained for the Earth’s magnetic field, and 0.732 and 1.260 Hz/degree are achieved for the applied fields of 0.195 and 0.39 mT, respectively (table 4). Although the resonator with six beams has higher linear stiffness than the resonator with four beams, it shows higher sensing performances at all measured external magnetic fields and this improvement can be attributed to the higher nonlinearity in the six-beam resonator due to its narrow beam width compared to the four-beam resonator. As configured, the single resonator response is symmetric in θ; therefore, compass orientations with opposite directions cannot be directly resolved. This limitation can be overcome by various means, including the use of multiple resonators on a single chip.

Figure 15. Micromachined silicon resonators. (a) Three-beam structure with 18.5 μm in beam width, (b) four-beam structure with 14.6 μm in beam width, and (c) six-beam structure with 13.1 μm in beam width.
The devices were tested at the Earth’s magnetic field, \(0.195\) mT and stiffnesses of the four-beam and six-beam resonators were \(\mu\) resonators have three, four, and six beams with beam widths in the direction of the Earth’s magnetic field. The micromachined structures have been designed, fabricated, and characterized to measure these effects, torsional resonant magnetic sensors have been obtained, resulting in increased sensitivity. In order to demonstrate these effects, torsional resonant magnetic sensors have been designed, fabricated, and characterized to measure the direction of the Earth’s magnetic field. The micromachined resonators have three, four, and six beams with beam widths of 18.5, 14.6, and 13.1 \(\mu\)m, respectively. The torsional linear stiffnesses of the four-beam and six-beam resonators were 44% and 58% of that of the three-beam resonator, thereby exhibiting higher sensing performance than the three-beam resonator. Although the linear stiffness coefficient of the six-beam resonator was larger than that of the four-beam resonator, the six-beam resonator showed higher normalized sensitivities at all of the measured external magnetic fields due to the large nonlinear stiffness, demonstrating the beneficial effects of nonlinear maximization.

A total system power consumption of less than 140 \(\mu\)W including a resonator actuation voltage of 1.4 mVrms has been demonstrated with a sensitivity of 0.28 Hz/degree to the Earth’s magnetic field. It can be operated continuously for more than 3000 h with a standard button cell (CR2025; 3 V, 140 mAh). Such a low power consumption level enables continuous magnetic field sensing for portable electronics and potentially wristwatch-type personal navigation applications.

6. Conclusion

It has been demonstrated that nonlinear effects in resonating structures can be used to increase the sensitivity of sensors based on these structures. These effects are illustrated with a model that consists of a disk-type resonator supported by multiple beams. The effects of nonlinearity on sensitivity have been characterized as a function of beam width and the number of beams using an analytical model. By increasing the number of beams while reducing beam width (and thereby maintaining constant nominal linear resonant frequency), large nonlinearity has been obtained, resulting in increased sensitivity. In order to demonstrate these effects, torsional resonant magnetic sensors have been designed, fabricated, and characterized to measure the direction of the Earth’s magnetic field. The micromachined resonators have three, four, and six beams with beam widths of 18.5, 14.6, and 13.1 \(\mu\)m, respectively. The torsional linear stiffnesses of the four-beam and six-beam resonators were

References

Figure 16. Resonant frequency measurement as a function of the rotational angle, \(\theta\): (a) three beams with \(w_b = 18.5 \mu\)m, (b) four beams with \(w_b = 14.6 \mu\)m, and (c) six beam with \(w_b = 13.1 \mu\)m. The devices were tested at the Earth’s magnetic field, 0.195 and 0.39 mT.
(2002) vol 1 pp 1101–4

[33] Ripka P 2003 Advances in fluxgate sensors Sensors Actuators A 106 8–14

[34] Ripka P and Janosek M 2010 Advances in magnetic field sensors IEEE Sensors J. 10 1108–16

